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ABSTRACT

Presented in this report is a study of instantaneous and
time-dependent deflections of simple and continuous reinforced
concrete beams with particular emphasis on effects of cracking,
r-continuity, shrinkage warping and steel percentage. A study of
L the pertinent factors affecting both initial and time-dependent

deflections of reinforced concrete flexural members is made,
[ and a summary of existing methods, guides and rules of thumb
| | for predicting these effects presented.

-

— A new and practical method is presented for computing
l shrinkage warping which agrees more closely with test data than
- previous methods advanced. A number of observations are made

with regard to the experimental curvatures and deflections
N ' obtained which refer to the effects of steel percentage,
[ cracklng and the phenomenon of the shifting neutral axis with
time on deflections.
B
| A detailed analysis is made of the effects of cracking on
~ deflections and recommended design procedures presented for pre-
dicting these effects. A method is demonstrated for including
the effect of moment redistribution due to cracking in computing
deflections of statically indeterminate beams. Deflections com-
puted by these procedures compared reasonably well with the
r‘experimental data obtained in this investigation and other data
| on deflections of simple and continuous reinforced concrete beams.
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I. INTRODUCTION

1,1 Object and Scope of the Study

With the present-day tendency toward the use of higher
strength concrete and reinforcing steel, and shallower sect-
ions, the problem of deflections is assuming greater and
greater importance. The purpose of this investigation is to
consolidate information on deflections as much as possible
and to study the complex deformational behavior of reinforced
concrete beams as influenced by the interrelated effects of
cracking, shrinkage warping, creep, tensile and compressive
steel percentage, continuity, moment redistribution in stat-
ically indeterminate beams, etc.

The experimental phase of the program was designed to
elucidate certain aspects of the deflection problem not here-
tofore clearly defined, such as the relative effects of high

' quality concrete, effects of sustained loads sufficient to

cause moderate cracking, and the effects of special combina-
tions of singly-reinforced steel percentages in companion
simple and continuous beams.

Particular emphasis is placed on a study of the effects
of random cracking on deflections; especially with regard to
moment redistribution in continuous beams resulting from
cracking. Shrinkage warping and creep deflection are also
analyzed from both theoretical and empirical points of view.

‘- Analytical procedures for predicting the various aspects of

-

]

the deflection problem are discussed and, in certain cases,
new procedures advanced. Comparisons are made with test
data to show the nature of the agreement that can be expected.

1.2 Notation

" Avg. Igogg -- average effective moment of inertia for simple

spans (Eq. 24)

Ag -- area of tensile steel
s -~ area of compressive steel
a . == 3 cremental length of beam
b -~ width of beam at the compression side
b' -- width of beam at the tension side
c ° -- constant, also used to denote compressive force
Ce -- creep coefficient defined as ratio of creep strain

to initial strain

-- total depth of beam

effective depth of concrete section

-- distance from centroid of compressive steel to
extreme compressive fiber

EI -= flexural rigidity

(7N =]
1
)
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--modulus of elasticity of concrete, short duration of
loading

--reduced or sustained modulus of elasticity of con-
crete, long duration of loading

--modulus of elasticity of steel

--average effective modulus of elasticity of steel
when participation of tensile concrete is taken in-
to account (see Eq. (9))

--distance between the centroids of the uncracked trans-
formad section (using nc¢) and the steel area

--distance between the centroids of the gross concrete
section and the steel area

--compressive stress in concrete

--concrete compressive strength at age 28 days, or
other age if specified

--modulus of rupture of concrete

--gteel stress

--yield point of steel

--relative humidity (H = 70 for 70% herein)

--average effective moment of inertia for continuous
beams (Eqs. 25 and 26)

--moment of inertia of the cracked transformed section

~--moment of inertia of the uncracked transformed sec-
tion using n¢¢

--effective moment of inertia at an individual section
(Eqs. 21, 22, 23)

--moment of inertia of the gross concrete section (neg-
lecting all steel)

~--moment of inertia of the uncracked transformed sect-
ion

--distance from extreme compression fiber to neutral
axis for cracked transformed section

--gpan length

--bending moment of beam

--moment corresponding to flexural cracking

--a constant power

--gubscript denoting maximum value

--modular ratio defined as Eg/E.

--increased modular ratio defined as Eg/E.,

--tensile steel percentage defined herein as (Ag/bd)
(100) %

--compressive steel percentage defined herein as
(Ag/bd) (100) %

--steel percentage in T-beams defined as (Ag/b'd)

--gteel percentage in T-beams defined as (Agf/b'd),
where Ags = (0.85) (£0) (b - b')(t)/fy

--equivalent concentrated load

-~-tensile force

--total compressive force induced in steel by shrinkage
--flange thickness for T-beams
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--denotes time interval, also used as subscript
denoting time-dependent

--subscript denoting ultimate value

--beam shear

--uniformly distributed load, also unit weight of
concrete in Eq. (1)

" ——uniform dead-load

--uniform superimposed-load

--beam deflection

--distance from neutral axis to the extreme fiber in
tension

--maximum deflection

--computed maximum deflection using the cracked
transformed section moment of inertia

--specific creep or unit creep strain defined as creep
strain per unit stress

--unit strain

--steel strain

--free shrinkage strain

--beam slope

--unit stress

--curvature or angle change per unit length of beam

--curvature due to shrinkage warping

--equivalent concentrated angle change

--coefficient taking into account the participation of
concrete in tension (see Eq. 9)
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ITI. NATURE OF THE DEFLECTION PROBLEM FOR REINFORCED CONCRETE
FLEXURAL MEMBERS

2.1 Primary Factors Involved in Deflection Prediction and
Control of Reinforced Concrete Flexural Members

‘'The problem of predicting and controlling deflections of
reinforced concrete flexural members under working loads is
extremely complex as a result of the large number of signifi-
cant yet uncertain factors involved. A partial list and brief
discussion of the more important factors follows:

1. Lack of accurate knowledge, in advance, of pertinént
concrete properties; such as modulus of rupture and compressive
strength, modulus of elasticity, and shrinkage and creep charac-
teristics. Knowing minimum specified strengths is not énough
since this does not provide sufficient information of, for
example, shrinkage and creep behavior. Higher strength con-
cretes may or may not shrink and creep less than lower strength
concretes. It can obviously be said, however, that when minimum
strength and modulus values and. maximum shrinkage and creep
values are used, computed deflections will tend toward the
high side.

2. Ambient temperatures and humidities, which affect the
items in 1. The primary influence here is uswally the effect
of humidity on shrinkage and creep.

3. Concrete age when sustained loads are applied, which
primarily affects creep behavior.

i. The effective section properties under instantaneous
load along the beam, including primarily the effect of "extent
of cracking'". The cracked and uncracked transformed section
properties are the two theoretical extremes and then only for
linear-elastic materials. Differences in the gross and uncracked
transformed section properties are seldom worth considering, and
the gross section is much more convenient to use for design pur-
poses. Involved in the determination of the effective flexural
rigidity is the contribution of concrete in tension between
cracks. Also involved is the effect of steel percentage, varying
depths and the flanges of T-beams (especially for continuous
beams) on the effective section properties along the beam.

5. Difficulty in determining shrinkage warping and creep
deflections, including the effects of a given crack pattern as
well as the phenomenon of progressive cracking under sustained
loads. Involved is a movement of the neutral axis with time
as a result of the time-dependent deformations in the non-
homogeneous composite concrete-steel structural member. Also of
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importance is the effect of compression steel in reducing
shrinkage and creep deflections. This is especially important
with regard to ultimate strength designs where it is usually
more economical, from a strength standpoint, to place additional
steel in tension rather than use compression steel.

6. The determination of what constitutes critical
deflections; that is, the difficult question of serviceability.

7. Other factors include. the increase (above the 28-day
values used in design) in concrete strength and modulus of
elasticity with time, the effects of bond creep, member size,
slab action, etc.

The difficulties involved in rationally analyzing the above
effects are virtually insurmountable in the average design
office if not in the research office. The problem appears to be
primarily one of a statistical nature involving statistically
optimum designs and confidence intervals for computed deflections.
The large number of variables involved, the variability of these
parameters and the interdependence of most of the variables
strongly supports this point of view. Nevertheless, a determin-
istic formula or formulas, however approximate, which incorporates
all of the factors that may be pertinent in a given design
situation would be of benefit to both the designer and the
researcher, It is to this task that the report herein addresses
itself, particularly with regard to the effects of cracking,
warping, continuity and steel percentage.

2.2 Review and Discussion of Existing Methods, Guides and Rules
of Thumb for Predicting Deflections

Presented in the following paragraphs is a brief discussion
of existing methods, guides and rules of thumb for determining

. deflection parameters and deflections themselves of reinforced

concrete flexural members. Items 1 through 6 of Section 2.1 are
considered in that order:

1., 2. and 3. Concrete Properties:

Values of modulus of rupture and modulus of elasticity of
concrete are not accurate functions of compressive strength
alone, Nevertheless, for most practical applications, the
following approximate formulas are usually satisfactory:

1,28, = 33 |/w £} (1)

c = 57,700 \/fé for concrete weighing 145 pef (2)

3ru= 1.5 \[£] (3)
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where E_ is the instantaneous modulus of elasticity, w is the
unit weight of concrete, f} is the compressive strength and fly
is the modulus of rupture.

Concrete strength, modulus of elasticity, shrinkage and
creep continue to increase for very long periods of time. In
the case of shrinkage and creep properties it is only possible A
to generalize within rather broad limits, and accurate test data
which incorporates the effects of local conditions should be
used when available. In the absence of test data, the following
shrinkage and creep information is often useful:

Schorer'sh formula is probably adequate for calculating
shrinkage strains for most design purposes:

€p = 12.5 x 107 (90 - B) (L)

where €_ is the free shrinkage strain in inches per inch and
H is relative humidity (H = 70 for 70% rel. hum.). This formula
gives an ultimate or design total shrinkage strain as a function
of relative humidity, but other variables account for rather
wide variations under certain conditions. However, most
shrinkage data agree with Eq. (L) within 25%.

In considering the effects of creep on the deflection of
concrete members, the use of a unit creep strain J' (creep per
unit stress) or a creep coefficient Ct (ratio of creep strain to
initial strain) amounts to the same thing, since the concrete
modulus E, must be brought in in either case and

JiE. (5)

This is seen from the relation

Creep Strain = ( Ubonstant> J£ = (Ejﬂitial) Cy, (6)

where Ee = (Toonstant) / ( Einitial) (7)

Which to use is a matter of convenience depending on whether it
is desired to apply the creep factor to applied stress or strain
when computing creep strain in Eq. (6).

Approximate ultimate values for the creep coefficient for
normal weight concrete under average design conditions are shown
in Table 1, where, in each case, the larger of the values
corresponds to an earlier loading age.
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m Table 1. Creep Coefficients

o

Ultimate C, = C_, (Ratio of Ultimate Creep Strain to
u U .
Initial Strain)

1

Concrete Average Relative Humidity
Strength 100% 70% 507
F' Ordinary 1 -2 1.5 -3 -0
L High 0.7 - 1.5 1-2.5|1. 5 - 3.5

! L. Effective Section Properties Under Short-Term Loading

The stress distribution and effective moment of inertia of
reinforced concrete beams vary considerably along the length of
i e beam. In regions of small moment the concrete works in
lcension, and the uncracked transformed section properties are
effective in determining stresses and deflections under short-
[2rm loads. In regions where the bending moment is greater than
| ne moment corresponding to flexural cracking, Mcr: the concrete
cracks, although tensile concrete between cracks still contributes
fignificantly to the flexural rigidity of the beam.

| The cracked transformed section properties (neglecting all
concrete on the tension side of the neutral axis) are not
| 1reasonable for use in calculating stresses in cracked regions
{.ader working loads, because the governing stresses usually
refer primarily to maximum moment sections. Also, any discrep-
i1ciles encountered in computing stresses using the cracked
sction properties are on the high or safe side, and are re-
flected at least in part, in well tested safety factors. The
puestion with regard to deflections is serviceability, not
| 1fety: and here it is not generally possible to provide limits
0L serviceability for all types of structures. In other words,
there is more of a premium on being able to predict deflections
¢ rcurately, than to compute fictitous numbers called stresses.
. .so, deflections are seen and felt.
m The effective flexural rigidity can vary greatly along a
. :inforced concrete beam in regions of cracking. The ratio of
uncracked to cracked transformed moment of inertia for "low"
steel-percentage beams is often of the order of five and larger.
qxe effective moment of inertia at any section that is cracked
Lus some value between the uncracked and cracked moments of
inertia, which depends primarily on the magnitude of the moment
{r a given beam and materials.

An acceptable method in many cases is to simply use an
e=erage of the uncracked and cracked transformed moments of
j ‘ertia fgr the entire length of beam. An European Concrete
Committee” recommends that the gross-section flexural rigidity
M
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be used for that part of the load that produces first cracking
and a modified cracked-transformed-section flexural rigidity for
the remainder of the load, with the computed deflection not to
exceed the "cracked transformed section" deflection. This
provides a consideration of loading stages but does not account
for variations in flexural rigidity along the beam. With the
question of loading stages, however, arises the thought that the
portion of the beam that cracks under maximum load no longer is
uncracked (even under the first increments of reload) upon
reloading.

Since the sections being discussed are gross and transformed
concrete sections, the concrete modulus of elasticity is, of
course, used in any flexural rigidity (EI) expression.

Yu and Winter6 developed an expression for an average
effective moment of dinertia to take into account the participa-
tion of tensile concrete in resisting deflections. Their
results were stated in the following form: Multiply (and thus
reduce) deflections, computed using the cracked transformed
section properties, by the factor

(1 - brl1) (8)
M
where M; = 0.1 (£:)2/3 (D) (D - xa)
M = moment under working loads
b! = width of beam at the tension side
D = total depth of the beam

The derivation of this expression followed an elastic-theory
approach with the factor 0.1 having been determined empirically
from beam tests. '

The moment M was a pure bending moment in the derivation,
and the factor 0.1 was determined on the basis that M is the
maximum moment in the span for the beams tested. It does
suffice to suggest that the effective moment of inertia at a
given section might be obtained by dividing the cracked
transformed moment of inertia by some factor similar to Eg. (8),
where M is the moment at the given section.

The modification factor given by Eq. (8) has a similar
effect on computed deflections as the method of Murashev! for
taking into account the participation of tensile concrete in
resisting deflections. This method uses the cracked transformed
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moment of ingrtia and an increased effective steel modulus of
elasticity, E, given by Eq. (9).

E=E/Y, ¥ £1.0 (9)

where ¥ =1 - C (Mcr/M)2 and C is a constant. This method is
based on the consideration that between cracks the steel stress
and hence deformation is less than right at the cracks; there-
fore, the average effective steel modulus of elasticity, E,

should be greater than the actual steel modulus, E, at the cracks.
A value for the constant, C, of 2/3 was recommended.

Specific locations of sections of first cracking can be
determined by Eq. (10),

g
Moy = féb Iucr (10)
It

where M., is the moment corresponding to flexural cracking,

fip is the modulus of rupture, IEcr is the moment of inertia

of the uncracked transformed section and y is the distance
from the neutral axis of the uncracked transformed section to
the extreme fiber in tension. For most purposes and most cases,
Eq. (10) can be replaced by the simpler Eq. (11),

Mep = féb Ig (11)

It

where I, is the moment of inertia of the gross concrete section
alone (neglecting all steel) and y, refers to the same gross
concrete section.

There would be 2 of these Mip-sections in a typical
reinforced concrete simple beam under service loads. Where
cracking occurs in both positive and negative moment regions,

i such M,,.-sections would exist in fully continuous beams and

3 in beams with only one end continuous. Consideration of the
effects of continuous T-beam flanges and beams of varing depths
would affect the above only in details. Also, the effect of
varying tensile and compressive steel percentages along the
beam would usually be a minor factor in locating a given Mgp-
section and would not be involved at all when Eq, (11) is used.

At a time when low working stresses were used, it was
deemed satisfactory to use the cracked transformed section pro-
perties in computing deflections. An American Concrete Institute
Deflection Committee Report8 in 1931 recommended this for general
use. However, in the last twenty-five years or so it has become
common practice to use the gross section properties in com-

~ puting deflections under working loads. The Portland Cement
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Association has recommended this practice for many years.

The new ACT Code2 contains the same gross-section pro- -
vision but modifies it slightly to provide for the use of the
cracked transformed section properties when pf,, is greater than
500. This is an attempt to guard against underestimating
deflections (using the gross moment of inertia) when high steel
stresses exist, such as where high working steel stresses are
used, or when high yield-point steel is used in ultimate strength
design.

In ultimate strength designs by Whitney's method9, a
balanced steel percentage is given by Eq. (12).

Ty = Cy

Ag £y = 0.85 £§ b (0.537d)

0.46 fe (12)
fY
Investigators 1, 11 have felt that a deflection warning should
be sounded when the ratio p for singly-reinforced beams, (p - p')
for doubly-reinforced beams and (py - pr) for T-beams exceeds
0.18 fé/f . This ratio is close to the balanced steel ratio by
elastic tKeory and less than one-half the balanced design ratio
by ultimate strength theory.

Pbal

For singly-reinforced beams the marginal steel percentage is

p = 0.18 fé/fy (13)

and pfy = 0,18 £
Hence the ACI value of pfy
strength concrete.

540 when f§ = 3000 psi.

= 500 is selected for ordinary

For the cases where pf, is less than 0.18 f§, the previous
reasoning calls fgr the use” of the gross section properties.
However, the PCA™“ showed that the use of gross-section proper- —
ties could be dangerous when steel percentages are low and where
working stresses are relatively high. It follows from the
previous observation that the effect of steel percentage alone
on effective flexural rigidity tends to be contradictory.

The AASH-le3 and others have for a long time advocated the use
of the gross-section properties to determine the flexural rigidity
of continuous beams for purposes of indeterminate analysis as
well as for computing deflections. This, admittedly, has been a
rather vague compromise, but one that was dictated by the nature —



O

(I

1

11

of the problem. In the case of continuous T-beams (flange
usually cracked in negative moment regions) and beams of
varying depth, an average of the positive and negative moment
section properties is often used in estimating deflections
using conventional formulas for prismatic members.

Since the use of the cracked transformed moment of inertia
tends to overestimate deflections, a reduced modular ratio (such
as n = 8 for all strength concretes recommended by the AASHOL3
for computing deflections under short-term loads) is often used
in an attempt to offset the high computed deflections. This
reduced modular ratio has the same effect as that provided by
an increased effective concrete modulus of elasticity. Another
technique that has been suggestedl is to reduce the deflections,
computed using the cracked transformed moment of inertia, by the
following empirical factors:

Deflection, A = 0.9 Axgr for simple beams

0.8 Asgr for one end continuous (L)
= 0.7 A.Jé’r for both ends continuous

where zlgr is the computed deflection using the cracked trans-
formed moment of inertia, For continuous beams, the section
properties corresponding to the points of maximum positive and
negative moments are usually used in this method as constant I's
throughout the regions of positive and negative moment,
respectively.

The misuse of the cracked transformed section properties
tends to be more pronounced in continuous beams than in simple
beams, as indicated by the factors in Egs. (1l). A greater
length of beam will normally be uncracked in continuous beams
as compared to simple beams (moment gradients are greater in
continuous beams and hence maximum moments drop off faster).

For example, consider the following extreme case: if a uniformly-
loaded, continuous, prismatic reinforced concrete beam with the
same positive and negative moment reinforcement has a cracking
moment capacity of WL2/2h, 0.82L or 82% of the span will be un-
cracked. For the same simple beam, but with the load multiplied
by 2/3 to account for the smaller allowable load on the simple
beam (the ratio of the maximum moments for the two cases), only
0.29L or 29% (18% if the load were not reduced) of the span will
be uncracked. However, certain factors such as distribution of
loads, varying section depth, steel percentage, etc., can cause
the use of these factors to lead to erroneous results.
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5. Shrinkage Warping and Creep Deflection

Concrete shrinkage induces stresses in both statically
determinate and indeterminate reinforced concrete structures.
In determinate members the shortening of the beam resulting
from shrinkage is resisted by the reinforcing steel, inducing
compressive stresses in the steel and tensile stresses in the
concrete., The tensile concrete stresses are maximum in the
vicinity of the reinforcement and thus combine with tensile
stresses resulting from transverse loads to cause additional
cracking. Shrinkage of the girders in redundant frames also
induces additional bending moments which are subject to direct
analysis.

When reinforcement is unsymmetrical, shrinkage causes a
nonuniform strain distribution which results in warping of the
cross-section., Although shrinkage and creep are undoubtedly
interdependent, the coefficients defining the magnitude of
these effects are usually expressed separately for practical
purposes. There are exceptions to this that are discussed
later in this section. FEven though the effects of shrinkage
might be considered (in an approximate manner) apart from those
of transverse load, shrinkage warping is obviously affected by
cracking and therefore by transverse load.

Shrinkage warping formulas have begn developed for both
uncracked and cracked sectionsl?s 15, 16, 17, 4in which an
equivalent elastic analysis is employed. In considering cracked
sections, however, the effect of load and shrinkage must be
considered simultaneously, since the extent of cracking is a
direct function of the transverse 1ldad. Since shrinkage warping
frequently has only a secondary effect and seldom a predominant
effect on total deflections, the simpler uncracked section
method is probably just as adequate as the other method and can
be used without regard to effects of transverse load.

Considering an uncracked transformed section (either singly
or doubly-reinforced beams, with or without flanges), the
warping curvature at any cross-section due to shrinkage is given -
by

*

T e
- M = S '
Pon ET Bot Lot (15)

where ¢sh = warping curvature resulting from shrinkage

% Note that Ferguson16 did not include the effects of creep in
the expression for EI as does Eq. (15).
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e = distance between the centroids of the uncracked
transformed section (using ngy = Es/Ect) and the
. steel area
Ect = sustained modulus of elasticity as defined by Eq.
(19)
I . = moment of inertia (using ngy = E</E.;) of the
ct c s/~ct
uncracked transformed section
r and Tg = (Ag  + 4L ) €y Bs (16)
where T4 = total compressive force induced in the steel
Ay = tensile steel area
m Al = compressive steel area
€sh = free shrinkage strain
‘ Eg = modulus of elasticity of steel
For singly-reinforced beams, AL = 0. When Ag, AL and e are

essentially constant along the span, the maximum shrinkage
deflection for a simple beam becomes,

2 2
_ Ic=Tse L (17)
r 4 (PSh E: Ect Ict

where A is the midspan deflection and L is the span length.

1

In considering the distribution of shrinkage strains and
corresponding shrinkage warping, creep effects should be included,
— because shrinkage stresses are sustained stresses. However, the
[ use of the usual creep factors, for concrete under constant

compressive stress, are rather nebulous, since shrinkage stresses
are variable (increasing at a decreasing rate with time), and
are tensile in nature. Also, the effective concrete modulus of
elasticity of interest here should refer to concrete in tension.
It is obvious from this discussion that the solutions of
shrinkage warping using quasi-elastic concepts leave much to be
(— desired. They, nevertheless, do provide rough estimates of
shrinkage deflections that can be compared with experimental
— data with partial success.

Miller18 has presented an interesting and different approach
to the shrinkage warping problem for singly-reinforced beams
only. His basic assumption is that the extreme fiber of the beam
on the side away from the reinforcing steel shrinks the same
amount as the plain concrete (Fergusonl disagrees with this).
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Following this assumption; the beam curvature is given by

¢5h - €an - &5 - €sh (1 _ € (18)

—
€sh
where €5 is the steel strain and d is the usual effective depth
measured from the center of gravity of the steel to the opposite
extreme fiber., Miller suggests empirical values of 6&/@}h = 0.1
for heavily reinforced members and 0.3 for moderately reinforced

members. This type of simplified empirical approach seems to have
merit, and is discussed further in Section 5.1.

d d

Time-dependent deflections of reinforced concreté flexural
members, resulting solely from effects of sustained load (creep
deflections), are usually greater than, and often two to three-
times as great as, deflections resulting from all other effects
combined during the life of a structure subjected predominantly
to sustained loads. Thus, creep deflections are of primary
interest and should always be considered in addition. to those
resulting from instantaneous loads and shrinkage.

In addition to the difficulty of computing the creep-time
history of a particular concrete under constant, uniformly-
distributed sustained stress, a reinforced concrete flexural
member is subject to.a nonuniform stress distribution and very
often a variable-load history. An accurate analysis of the
effects of a variable stress history even for uniformly loaded
specimens, requires creep-time curves and a knowledge of the
loading history., The rate-of-creep methodl? or the super-
position methodé can then be used when detailed creep and
loading information are available.

The rate-of-creep method, illustrated in Fig. 1, is straight
forward. Consider an extreme case in which a concrete specimen
is subjected to a compressive stress ¢ for a time interval t7.

At the end of this interval, the stress is removed completely.

According to the rate-of-creep method, the creep strain at
time t; is U-Jtl, the product of the sustained stress and the
unit creep strain for the time considered. Once the stress is
removed, there is no further change in creep strain and at a
time, say 2%y, the creep strain is still V—Jtl.

The superposition method, illustrated in Fig. 2, predicts
the same creep strain at time t7 of 0 However, rather than
assuming directly that- the compressive s%ress is removed at time
t1, it is assumed that the specimen is subjected to an additional
stress of O in tension and creeps under two opposing fictitious
stresses. For example, assuming that the creep characteristics
of the concrete are the same in tension and compression and are
independent of the concrete age when loaded, the compressive creep
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strain at time 2t; is @ o o4, while the tensile creep strain

is T 4. since the tensile s%ress is a new stress applied for

a time interval t,. The total compressive creep strain at time
2ty is thus i °r2t - d+.) and represents a reduction with

respect to the creep strain at time t1, since ( J-Ztl - Jtl) is

less than Jf (primary creep curve increases at a decreasifg

rate with tim%).

Usually such a detailed analysis is not feasible, and a
shorter, more approximate method is used. One such method is
the sustained-modulus method which refers to concrete under a
constant sustained stress. In this case a reduced or effective
modulus called the sustained modulus of elasticity is used for
computing initial-plus-creep deflections.

E
5, - poonstent = F vconsﬁnz O T (19
ct €initial * €creep initial t t
where Ect = sustained concrete modulus of elasticity
Ec = ordinary concrete modulus of elasticity under
instantaneous load
Ct = creep coefficient defined as the ratio of creep

strain to initial strain

When the sustained modulus of elasticity is used with, say
the gross section properties in computing deflections, the
resulting creep deflections are simply equal to the initial
deflections multiplied by the creep coefficient. It seems
inappropriate however, to use the term flexural rigidity (EI)
or beam stiffness in connection with the sustained modulus of
elasticity, since the effect of creep is to increase deflections
but not to decrease the bending stiffness of the beam (such as
for additional short-term loads, etc.).

Most recommended methods for computing creep deflections
follow some ramification of this approach. Usually the deflec-
tions computed using the gross-section properties are obtained
and creep factors (or deflection factors), which include com-
pressive steel effects, specified. Both shrinkage and creep
deflections tend to be drastically reduced when compressive
steel is used. Only the quasi-elastic method (Eg. 17), and not
the method of Miller (Eq. 18), refer to shrinkage warping for
doubly-reinforced beams.

The crsT?t suggests the following method for computing
combined shrinkage and creep deflections: Use the gross
concrete section properties and a shrinkage-plus-creep factor
of 3; that is, the total deflection is L times the initial
deflection or E, 4 = E./Li. For a compression steel area equal
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to the tension steel area, use one-half the usual shrinkage-
plus-creep factor or 1.5 for simple beams and one-third the
usual factor or 1.0 for continuous beams.

Yu and Winter6 presented an empirical table of such
shrinkage-plus-creep factors for different durations of loading
up to five years. The new ACI Code? adopted their 5-year or
"ultimate'" values as follows: '"The additional long-time deflec-
tions may be obtained by multiplying the immediate deflections
caused by the sustained part of the load by 2.0 when A{ = O;
1.2 when AL = 0.5 Ag; and 0.8 when A} = Ag." Typical differ-
ences are seen for such recommended factors by comparing the
CRSI and ACI wvalues of 3 with 2 and 1.5 or 1.0 with 0.8. The
reason for such variation is that other factors, such.as con-
crete quality, age when loaded, loading duration, relative
humidity, etc., significantly influence time-dependent concrete
deformations.

Total time-dependent (combined shrinkage and creep) deflec-
tions might be computed simultaneously, with the use of some
combined shrinkage-plus-creep factor, using any method advocated
for computing creep deflections alone. The combination of these
two effects is probably satisfactory for broad-approximate design
procedures, but leaves much to be desired in analytical work
where reasonably precise results are desired in unusual as well
as typical structures.

In addition to the fact that the strain distribution is
nonuniform in any flexural member, even though linear, creep
of the reinforced concrete beam seems to have the effect of
moving the neutral axis toward the tension zone. This effect
can be obtained by the use of a cracked transformed section
method where an increased modular ratio (resulting in an
increased effective steel area), is defined by

ngt = Ss = n(1 + Cy) (20)
where n = Eg/E.. However, in regions where cracking is limited
or nonexistent, this method tends to lead to computed deflections
that are too large, as does the use of the cracked transformed

sec¢tion for short-term loads with the usual modular ratio n.

6. Serviceability

Deflections of reinforced concrete flexural members should
be controlled so as not to affect adversely the appearance and
serviceability of a structure. This statement is completely
general but is of primary concern to the design engineer.
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Should the matter of serviceability be subject to "specification
or code laws'" as in tun. case of safety? Can general limits of
serviceability be provided for all types of structures? And of
what value are prescribed minimum depth-span ratios? The
answers to these questions are not within the scope of this
report -but are mentioned in an effort to present a more complete
picture of the deflection problem. A detailed review of
European span-depth 1imitation5 (which tend to be more liberal
than those of the new ACI Code“) is presented in the CEB Reports.

The question of serviceability is radically different in
bridge and building structures, primarily because of the problem
of damage to plastered ceilings, partitions, window sashes, etc.,
in the case of buildings. Also, cambering is more efficiently
used in the case of reinforced concrete bridge structures to
offset excessive deflections. However, in both cases adequate
deflection-control still depends on the ability of the designer
to predict instantaneous and time-dependent deflections with
reasonable accuracy.

7. Summary

It seems worth mentioning that most, if not all, of the
suggested methods, guides and rules of thumb in this section
will provide rough estimates of reinforced concrete beam
deflections in most cases involving "typical designs" and
"ordinary" conditions. However. the fundamental behavior of a
reinforced concrete flexural member is so complex that a great
deal of judgement is needed when any significant aspect of a
design is somewhat unusual or marginal. Answers to particular
questions regarding deflections very often depend largely on the
case at hand.
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ITT., DESCRIPTION OF EXPERIMENTAL INVESTIGATION

3.1 Specimens and Instrumentation

The experimental phase of this investigation included
primarily the measurement of instantaneous deflections; time-
dependent deflections; and concrete strains resulting from
elastic shortening, shrinkage and creep. Two simple-span beams
and two continuous beams (each continuous over two spans) were
the principal test specimens. One simple (SB-1) and one
continuous beam (LB-1) were reinforced with one #3 bar and the
other simple (SB-3) and continuous beam (IB-3) were reinforced
with three #3 bars. All spans were 9 feet (continuous beams,
18 feet long). Duplicate shrinkage specimens containing one #3
bar, three #3 bars, and also containing no steel were used.
These were placed on their sides on a smooth surface in order
to minimize frictional effects.

The geometry and details of the test beams are shown in
Fig. 3. No stirrups were required in the beams of this investi-
gation. The shrinkage specimens were the same size as the
simple beams. The design details of the test beams are shown
in Table A.1.

The slump of the concrete was 1.5 in., and the 28-day
concrete cylinder sgrength and modulus of elasticity were 5130
p.s.i. and Lh.L x 10° p.s.i., respectively. The concrete mix
design, per cubic yard of concrete, was as follows:

Cement (Type I) ;23 1b
Sand 1335 1b
Stone 1930 1b
Water 20 gal

The tensile yield point of the hard grade billet steel rein-
forcement averaged 52,000 p.s.i.

A Whittemore mechanical strain gage, shown in Fig. 5, 6
(ten-inch gage length providing direct readings to 10 x 10~
inches per inch) was used to measure the concrete strains. The
gage points were stainless steel inserts imbedded in the concrete.
Each beam had one gage near the top and one near the bottom on
both sides and at three different locations along the beam, as
shown in Fig. 3. The strain gage points on the shrinkage
specimens were placed in the same locations as those of the
simple beams except on one side only, since these shrinkage
specimens were placed on their sides. A total of 12 strain
gages (2l gage points) were used on each simple and continuous
beam and 6 strain gages (12 gage points) used on each shrinkage
specimen. Strains resulting from temperature changes were
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Fig. Li--View of test beams, shrinkage
specimens and instrumentation

Fig. 5--View showing close-up of
Whittemore gage and dial gage
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eliminated from all shrinkage and creep data by means of a
control gage having the same thermal coefficient as the concrete.
The inner bar of the Whittemore gage is made of invar metal.

Dial gages were used on both sides of each simple beam at
midspan and at the point of maximum elastic deflection for the
continuous beams. The accuracy of the dial gages (0.0001 in.)
for measuring deflections provided excellent data for this part
of the study.

3.2 Experimental Results

A1l beams were loaded at age 28 days with the beam dead-
load plus a uniformly distributed superimposed-load. Iron
bricks were used for the additional loading. The bricks were
placed continuously along the 3-bar beams and spaced uniformly
along the l-bar beams (in the latter case the difference between
the deflections computed for the intermittent-load and the equiv-
alent continuous-load was of the order of 1% and was ignored in
the study). A superimposed-load to dead-load ratio of 2.0 was
used for the l-bar beams and 5.5 for the 3-bar beams. The total .
loads resulted in computed maximum concrete compressive stresses
that were the same for the corresponding simple and continuous
beams (the l-bar beams--also the 3-bar beams); also resulted in
computed maximum concrete compressive stresses that were the
same at all points along the l-bar and 3-bar simple beams--also
the same at all points along the l-bar and 3-bar continuous
beams.

A comprehensive schedule of deflection and strain measure-
ments was maintained throughout the test period of 60 days.
Each deflection and strain value reported is an average of the
readings on both sides of the beam in the same position. Thus,
any small effects resulting from warping or accidental eccentri-
cities of loading were compensated for. Also, only the average
of the corresponding strain readings on the duplicate shrinkage
specimens, the quarter-point strain gages for the simple beams
and the strain gages located at the points of maximum elastic
deflection for the continuous beams were reported. This pro-
vided a statistical approach for determining experimental values.
The variations were random and not significant. The basic
strain, curvature and deflection data are shown in Figs. A.l
through A.10.

Additional data obtained include temperature and relative
humidity data. The average ambient temperature was 8l degrees
F. with extremes recorded of 79 and 91 degrees F. The average
ambient relative humidity was 59% with extremes recorded of 32
and 72%. Pictures of the test specimens and instrumentation are
shown in Figs. L and 5.
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- IV. EFFECTS OF CRACKING ON INSTANTANEOUS DEFLECTIONS OF SIMPLE

AND CONTINUOUS REINFORCED CONCRETE BEAMS

As discussed in Section II, a relatively large number of
methods, guides and rules of thumb have been recommended from
time to time for computing instantaneous and time-dependent
deflections of reinforced concrete flexural members with varying
degrees of success. Conflicting aspects of the existence of a
complex problem and the need for quick, practical design methods
have resulted in an over-emphasis on the latter. It now seems
evident that it is probably not possible to describe an accept-
able method for predicting deflections that is as brief as
desirable and still includes provisions for all eventualities.

Irrespective of the difficulties of not knowing, in advance,
the material properties and time-dependent characteristics of the
particular concrete to be used, it is, nevertheless, of utmost
desirability to prescribe design methods that incorporate all of
the pertinent aspects of the problem. The business of getting
concrete that meets specified conditions is largely one of
quality control; an area that is subject to improvement in
keeping with the demand for such improvement.

Instantaneous deflections are of primary importance in con-
sidering deformational behavior of weinforced concrete beams
under transient live-loads as well as in determining initial
deflections under sustained loads. Most practical methods for
computing creep deflections are based on the initial computed
deflections.

Considered in this section are the effects of cracking on
deflections of réinforced concrete beams under short-term loads.
This requires an evaluation of the effective section properties
along the beam as influenced by effects of cracking and partici-
pation of tensile concrete between cracks. Since behavior under

" repeated loading (not necessarily in the sense of fatigue loading)

should generally be considered, the effective sections along the
beam under all increments of loading should be taken as those

* under the maximum load, or neglecting the effect of loading stages.

That is; the portions of the beam that have cracked under maximum
load, can no longer be uncracked under smaller loads, if healing
effects are neglected. Overloads would affect this consideration

~ but would tend to be offset by the continued increase in concrete

strength with time. A distinction might be made between short-
term live-load deflections, where reloading occurs, and initial

" sustained-load deflections such as under dead-load, which may be

applied only once. However, this distinction is probably not
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justified in most cases and is considered of secondary impor-
tance in the analyses to be discussed. Also of interest is a
practical method for integrating the effects of cracking along
the length of the beam in the case of both simple and continuous
beams.

4.1 Development of an Analytical Method for Including the Effects
of Cracking in the Prediction of Instantaneous Deflections

In regions of cracking the effective moment of inertia,
Ierf, under instantaneous load is less than the uncracked trans-
formed moment of inertia, Iﬁcr, but greater than the cracked
transformed moment of inertia, Ig , due to the participation of
tensile concrete between cracks. The actual value of Tgfr at a
given section depends primarily on the extent of cracking or the
magnitude of the bending moment, M, in addition to the section
details and concrete strength.

One logical form of an expression for Igef, at a given sec-
tion, that satisfies the boundary conditions (when M = Mgy,
Terr = If.p; and when M3 Mgy, Igrr — IL.), is given by Eq. (21).

When M > Mcr,

M
Lgpe = Iacr - [Iﬁcr - Igr ] [1 - ( ==

m} (21)

M

where m is an unknown power. A precedent for a power function
relation relative to the distribution of cracking effects was
established by Murashev's Eq. (9) in a totally .different form.
However, a considerably different value for the power is deter-
mined herein, although initially it was thought that a second
degree function was reasonable, as in the case of Eq. (9).

Since the uncracked transformed moment of inertia is usually
only slightly larger than the gross section moment of inertia,
the latter is used in the remainder of the discussion. In cases
involving heavily reinforced members, it might be desirable to
use the uncracked transformed section value.

Rewriting Eq. (21) and replacing Iﬁcr with Ig,

R R R TR

It is seen that the sum of the two bracketed terms is always
equal to unity, and, hence, Igff in Eq. (22) always has some
value between Ig and IG5y when M > M.,

Mor
M




-

1

1

1

I

1]

1

25

If an acceptable evaluation can be made of the
appropriate value for m, Eq. (22) should provide an effec-
tive means for determining the severity of cracking at a
given section under applied moment in a form directly
applicable to the computation of deflections. A study of
Eq. (22) reveals the following weighted values for the two
section properties corresponding to different magnitudes
of moment greater than Meyr:

leff = C1Ig + CZIF:_I;
M=1.2 Mer M=2.0 Mer M=4.0 Mer

C1 C2 C1 C2 c1 C2
m=1 0.83 0.17 0.50 0.50 0.25 0.75
m =2 0.69 0.31 0.25 0.75 0.06 0.9
m=3 0.58 0.42 0.13 0.87 0.02 0.98
m=4 0.48 0.52 0.06 0.9 0.00 1.00
m=5 0.40 0.60 0.03 0.97 0.00 1.00

An exhaustive study was made of the current and other
experimental data involving statically determinate rectangu-
lar and T-beams to determine the appropriate value or values
for m, corresponding to the effective moment of inertia at

the individual sections. The Newmark?? numerical procedure
(illustrated in Fig. 6) was used for this purpose. Results

using m = 4 for both rectangular beams and T-beams are seen
in Table 2, Col. F to agree with test data in all cases
within + 25% and in 657% of the cases within + 10%. Twenty-
three test results were used in the comparison.

In addition, test data for eleven continuous rectangu-
lar beams were compared with the calculated results using
m = 4. The Newmark procedure, as used in these solutions
(illustrated in Fig. 7), provides a method for incorporat-
ing the effects of moment redistribution due to cracking
in statically indeterminate beams. As shown in Table 2,
Col. F, the computed results agree with the test data in
all cases within + 17% and in 70% of the cases within + 10%.

All of the test beams, concrete properties and computa-
tion details referred to are summarized in Tables 3 and 4.

Thus, for determining the effective moments of inertia
at individual sections, Eq. (23) is suggested:
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For Rectangular Beams and T-Beams

e )% [0 T e

Following the above evaluation, it was deemed
desirable to attempt to obtain appropriate values for the
power m in an expression that could be used as an average
effective moment of inertia for the entire length of a
beam. The general expression provided by Eq. (22) is of
a form that should accommodate such an evaluation, since
it includes both extremes of moment-of-inertia values
along the beam as well as appropriate moment variables.
Since all of the test data involved uniformly distributed
loads, other distributions of moment might be expected to
result in a different evaluation of m. In cases involving
heavy concentrated loads, for example, the more general
solution such as that provided in the Newmark numerical
solution with the use of Eq. (23), should be employed.

In effect, the use of Yu and Winter's Eq. (8) along
with the cracked transformed moment of inertia provides
an average effective moment of inertia for an entire length
of beam. However, the empirical constant of 0.1 was based
on test beams that were all rather severely cracked. The
results in Table 3, Col. X for beam LB-3 suggest that
Eq. (8) may not apply generally in cases where beams are
only moderately cracked; a condition that was included in
the evaluations herein.

For determining an average effective moment of inertia
over the entire length of a simple reinforced concrete

beam, Eq. (24) was found to be appropriate (see Table 2).

For Rectangular Beams and T-Beams

Mer 3 Mcr \ 3 .
Avg. Teff = . Ig + L- | — Ier (24)
ax Mmax
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Because of the way in which these equations are bounded by
reasonably well-established limits (I, and Igr) in addition

to the experimental verifications herein, the use of Eq.(24)
should be acceptable for general use with a considerable de-
gree of confidence. The results of the experimental evaluation
of the powers in Eq. (24) is shown in Table 2, Col. H. These
solutions using Eq. (24) differed from those using the more im-
volved mumerical solutions and Eq.(23) by a maximum of 3%.
This comparison is shown in Table 2, Col. I.

This short-cut approach for obtaining average effective
moments of inertia for simple beams was found to be applicable
to beams continuous at one end using the following weighted
average for the positive and negative moment regions (see Table
2):

Lo = % [Pos. Mom.Avg.IeffJ ;l%_ [Neg.Mom.Avg.Ieff (25)
Although, the experimental data did not include beams continu-
ous at both ends, it is believed that an acceptable solution
for obtaining an average effective moment of inertia for beams
continuous at both ends is as follows:

Ty =2 Pos.Mom.Avg.Ieff fl Meg'Mom'Avg'Ieff e
3 6 End

(26)

F1 [Neg.Mom.Avg.Ieff] Right
6 End

In either case (involving Eqs.(25) or (26) the positive
moment section properties have the dominant influence on deflec-
tions. Results using Eqs.(24) and (25) are shown in Table 2,
Col. H to agree with test data in all cases within £ 15%.

Eleven test results were used in the comparison. The redundant
moments were determined on the basis of elastic analysis for
prismatic members in these solutions.

4,2 Outline of Computational Procedures

The following procedures are outlined for computing instan-
taneous deflections using the previous equations and Eq.(11l);

Simple Beam (Constant Concrete Dimensions)

1, Computed the cracking moment, M.y, using Eq.(1l).
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2, If the maximum bending moment under service loads is
less than M;,, use E I, for the flexural rigidity at all points
along the beam in computing the beam deflections.

3. If the maximum moment (including overloads if desired),
Mmax’ is greater than M.,., compute values for I, ¢s using Eq.(23)
at a sufficient number of sections in the cracked regions and
compute the service-load deflections using the moments of iner-
tia thus determlned The conjugate beam method or, preferably,
the Newmark numerical procedure (illustrated in Fig., 6) are
well suited for this purpose.

3(a). Sufficient accuracy can usually be obtained with
the use of a constant moment of inertia value determlned by
. (24).

Continuous Beam (Constant Concrete Dimensions, Including
T-Beams)

1. Compute the cracking moment, M.,, for both positive
and negative moment regions (same value for both except for
T-beams, in which case the flange overhangs should be neglected
in computing the negative-moment value) using Eq. (11).

2., If the maximum bending moment (determined from a pris-
matic beam analysis) under service loads is less than M
both positive and negative moment regions, use E I_ for the
flexural rigidity at all points along the beam in computing
the beam deflectionms.

3. If the maxiwum negative moment using prismatic beam
analysis (including overloads if desired), M ax» 18 greater
than Mcr, computed values for I ¢¢ using Eq. ?%3) at a suffi-
cent number of sections in the negative moment region or regioms.
Do the same thing for the positive moment region. If the maxi-
mum moment is less than M., in only one of the regions, use Ig
in that region. Compute the service-load deflections using
the moments of inertia thus determined and the Newmark numerical
procedure (illustrated in Fig. 7 for a beam continuous at one
end only) which includes the effect of moment redistribution
due to cracking.

3(a). Sufficient accuracy can usually be obtained with
the use of a constant moment of inertia value determined by
Eq. (24) and Eqs. (25) or (26).
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Continuous Beam (With Variable Depths)

1. Determine values for M, M_. It , and I eff ID
the Newmark solution (also using Eqs. (%1) and (23)) €and com-
pute the deflections at the same time. A unique solution can
be found which incorporates the effects of moment redistribu-
tion resulting from cracking, although a number of trials will
usually be required. A shorter method in this case can easily
lead to erroneous results. However, a very rough short-cut
estimate could be obtained by following the procedure outlined
for constant-dimensioned beams using Eqs. (24) and Eqs. (25)

or (26).

In many cases computed deflections using the ordinary
gross-section method will not be greatly different from de-
flections using the numerical procedure. However, the more
extensive method is needed to take into account unusual con~-
ditions of proportioning, loading, etc.

The following is a summary of the boundary conditions,
agsociated with different cases of statically indeterminate
beams, required in the numerical solution to incorporate the
effects of moment redistribution resulting from cracking in
computing deflections of continuous reinforced concrete beams:

1. Single Span Beam, One End Fixed, One End Pinned

The solution of this problem is illustrated in Fig. 7.
The procedure applies equally well to uniform and nonuniform
beams (symmetrical or unsymmetrical), with variations in I
properly taken into account for nonuniform beams. The trial
shear distribution is required s8ince no boundary condition is
known for shear.

Boundary Conditions:

= ? .
0 at pinned end
0 at fixed end
0 at both ends

<oR<

2. Single Span Beam, Both Ends Fixed

A, Symmetrical Beam (uniform or nonuniform)
Consideration of half of the beam would be con-
venient in the numerical procedure., A trial
moment distribution is required since no boundary
condition is known for moment, in general. The
procedure would be similar to that of Fig. 7 for
Case 1 above, except that the distribution check
would be made for slope instead of for deflection.
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Boundary Conditions:
V = 0 at midspan
M=7
8
y

0 at end and midspan
O at end

B. Unsymmetrical Beam (uniform or nonunifozm[

Consideration of the entire length of the beam
would be required. Both trial shear and moment
distributions are required. However, the unique
solution would be found when all four boundary
conditions (for slope and deflection) are satis-
fied.

Boundary Conditions:
= ?
=7
O at both ends
0 at both ends

qo=d

3. Continuous Beam of Two Spans

A, Symmetrical Beam (uniform or nonuniform)

Same as Case 1 above.

B. Unsymmetrical Beam (uniform or no j
Consider the entire two spans in the numerical
procedure. Trial shear distributions are required
in both spans and would be temporarily established
by the requirement that the moment for each beam
end at the middle support is the same. Trial
slopes are also required in both spans .and would
be adjusted until the slope for each beam at the
middle support is the same. A final overall dis-
tribution requirement must be met for the boundary
conditions on deflection, after which the unique
solution would have been found.

Boundary Conditions:
V=27
M = 0 at both outside ends; and the same for

each beam end at the middle support.

same for each beam end at the middle support.
O at all three supports.

e
Yy

;. Continuous Beam of Three or More Spans

A similar solution as for Case 3B would be possible for
any number of spans.
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V. DISCUSSION OF TEST RESULTS

The experimental phase of this investigation was undertaken
in order to evaluate the effects of certain variables heretofore
not clearly distinguished. Relatively high quality concrete
beams -of moderate span-depth ratios and loaded so that moderate
cracking occurred provided a useful distinction from most of the
other deflection tests that have been reported; which were of
average concrete quality, average-to-large span-depth ratios
(up to 70 which is abnormally large), and severely cracked (see
Tables 3 and L). Also, the test beams herein were carefully
designed with different steel percentages so that the computed
maximum concrete compressive stresses were the same for the
corresponding simple and continuous beams (the l-bar beams --
also the 3-bar beams); also that the computed maximum concrete
compressive stresses were the same at all points along the
l-bar and 3-bar simple beams -- also the same at all points
along the 1-bar and 3-bar continuous beams. Compression steel
was not included as a variable in the current experimental
program.

5.1 Shrinkage Warping

Primary interest with regard to analytical methods for com-
puting shrinkage warping centers around the basic assumptions and
hence the pertinent variables involved. For example, the quasi
elastic "tensile force" method given by Eq. (16) includes a
flexural rigidity expression not found in Miller's method given
by Eq. (18).

b = T B where Ts = (As + A8) €an Es (16)
b - €sh (1 - €s/ € sh) (18)
sh d

The latter equation results in a warping expression as a function
of the free shrinkage, effective depth and a constant (paren-
thesis) which was specified in a general way to be 0.9 for heavily
reinforced members and 0.7 for moderately reinforced members.

The method is applicable to singly-reinforced beams only, whereas
Eq. (16) is applicable to both singly- and doubly-reinforced beams
Basic to Miller's approach is the assumption that a concrete member
restrained at some point outside the kern limit on one side, will
not shrink more (but rather will undergo an equal shrinkage) than
the free shrinkage on the opposite extreme fiber, as the tensile
force method of Eq. (16) predicts.
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The curves of the current investigation shown in Fig. 8
indicate that the extreme fiber does shrink more than the free
shrinkage of the companion specimen, but not much more. Hence
the effects of the eccentric steel resistance, outside the kern
limit of the section, do seem to produce "greater than free'
shrinkage of the opposite extreme fiber. But Miller's approach
would certainly appear to be a close approximation., Of course,
in deeper beams (greater eccentricity) the assumption would tend
to be further im error, but in these cases the increased depth
greatly reduces the shrinkage-warping curvatures anyway.

The current and other shrinkage data have been tabulated
in Tables 5 and 6 and the results compared with the following
procedures for computing shrinkage warping:

Eq. (16) is modified to use the simpler expressions
(Be/2) (1 ) in place of E . I,y and €g which refers to the
gross section. This Eq. (27) is applicable to both singly-
and doubly-reinforced beams. Closer agreement with test
results was found as a result of this convenient modification.

= Ig e
cpsh __Ec Ig (27)

2

Miller's Eq. (18) is applicable only to singly-reinforced
beams.

The following new empirical expressions, which provide the
closest agreement with test results, are introduced. Eqs. (28)
and (29) are applicable to both eingly- and doubly-reinforced

beams.
o (0.7) €sh (p-p')L/3 {g-g" V2 gor (p-p") % 3.0% (28)
sh = D ]

and

Dsh = €sh, for (p-p') > 3.0% (29)
D
For singly-reinforced beams, p' = 0, and Eq. (28) reduces to

Pen = ©.7) sh pl/3 (30)
D

With regard to comparisons with 16 test results, the fol-
lowing agreements were found and are shown in Cols. K, N, and P

in Table 6:
Using Eq. (27) Results agreed with test data in 25% of the

cases within 10%.
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Using Eq. (18) Results agreed with test data in 23% of the
cases within 10%.

Using Eqs. (28),(29),(30) Results agreed with test data in 69%
of the cases within 10%.

Keeping in mind the nature of the problem, the latter agreement

is thought to be reasonably good.

Eq. (28) is an adaption of Miller's approach, For example,
his method results in the following expressions for singly-
reinforced beams only:

Qb = 0,7 €sh for moderately reinforced beams.
sh d

4) = 0.9 Esh for heavily reinforced beams.
sh d

Eq. (30) for singly-reinforced beams results in the following:
¢sh 0.56 € sh/D when (p - p') = 0
.70 " 1
.80 U 1
.88 " 2
.96 " 2
1.01 " 3

The use of the more convenient overall depth D instead
of the effective depth d was found to provide closer agreement
with the data. The difference is negligible for all but shallow
beams and for these, the use of D seemed to provide the best
fit. It is, of course, assumed that abnormal covers (abnormal
differences in D and d) are excluded from consideration.

Eqs. (28) and (29) refer to both singly- and doubly-
reinforced beams. The expression in the last parenthesis
of Eq. (28),
1/2
p-p' (31)
P
was found to be required in order to produce a somewhat smaller
curvature for doubly-reinforced members than for singly-reinforced
members when (p - p') for the doubly-reinforced members is equal
to p for the singly-reinforced members; other conditions being
the same. It is seen that the modifier of Eq. (31) becomes unity
when p' = 0., Eqs. (28),(29), and (30) provide very simple ex-
pressions for computing shrinkage warping in terms of only two
section properties (D and p or (p - p')) and the free shrinkage
€ sh- However, the data in Tables 5 and 6 tend to indicate
that the methods discussed should be used with caution when
dealing with high-strength concrete.
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It should be mentioned that consideration has not been given
to effects of cracking on shrinkage warping in either the experi-
mental studies of the current investigation and others reported
in the literature or in the analytical methods discussed. At
least according to the tensile force method, cracking would tend
to increase the eccentricity of the tensile steel in singly-rein-
forced beams and would therefore seem to increase shrinkage warp-
ing. However, according to the other approach discussed, effects
of cracking should play a minor role in producing shrinkage warp-
ing since the extreme fiber is still assumed to shrink an amount
equal to the free shrinkage, and the resistance factor provided by
the empirical constant (0.7) and the steel percentage term or terms
would not seem to be much different in the case of warping of crack-
ed sections,

With regard to shrinkage deflections of continuous beams, if
the effect of moment redistribution resulting from shrinkage cur-
vatures are neglected, the effects of shrinkage on deflections can
be determined using any moment-area technique or numerical proced-
ure and the curvature expressions discussed herein (by substituting
the curvature ¢ for M/EI). Eqs. (18),(27),(28),(29), and (30) all
define shrinkage curvatures at individual sections, although these
expressions are usually constant for a considerable length of a
reinforced concrete beam.

5,2 Deformational Behavior of Test Beams

In addition to the shrinkage strain and curvature data for the
shrinkage specimens shown in Figs. A.2 and A.3, the total (instan-
taneous plus time-dependent) and instantaneous plus creep strain
data are shown in Figs. A.4 through A.7. Since the curves have
markedly "leveled off'", and witth the additional information shown
in Fig., 9 for projecting 2-month values to 20-year or '"ultimate"
values, certain quantitative as well as qualitative conclusions
can be drawn with regard to ultimate deformational behavior.

In Figs. A.6 and A.7, the tension-gage strains are seen to
decrease with time in cases where shrinkage strains exceed the
creep strains. The basic curvature and deflection data for the
test beams are shown in Figs. A.8, A.9, and A.10, and further
represented in Fig. 11 and Table 7. The testing period reported
for the beams of this investigation was 2 months.

Average values for the creep coefficients (defined as ratio
of creep strain to initial strain) shown in Fig. 10 were virtually
the same for the tension and compression gages, although the great-
er variation was observed for the tension gages. This was probably

due to the random cracking at some of the gage locations
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on the tension side of the beams. The average values for the
time-dependent (shrinkage plus creep) deflection coefficients
(defined as ratio of time-dependent deflection to initial
deflection) are shown in Fig. 11.

At 2 months the average tensile and compressive creep coef-
ficient was about 0.9 while the average time-dependent deflection
coefficient was about 1.5. Projecting these values to 20-year
values using Fig. 9 (multiplying by 2) results in corresponding
coefficients of 1.8 and 3.0 respectively. Results in Table 7
indicate that shrinkage curvatures varied from 11% to 19% of the
total time-dependent curvature, so that the corresponding average
creep deflection coefficient (defined as ratio of creep deflection
to initial deflection) would be about 2.6. By comparing the
ultimate creep strain coefficient of 1.8 with the ultimate creep
deflection coefficient of 2.6, it is suggested that other effects
seem to have a definite influence on so called creep deflections
other than direct concrete creep strains. Undoubtedly one of the
principal explanations is that of a shifting neutral axis and
time-dependent adjustments in the stress as well as strain dis-
tributions along the beam. This is also discussed with regard
to the experimental curvatures obtained.

For relatively high strength concrete, loads applied at age
28-days (considered an average loading age -- not particularly
early or late), and 59% average relative humidity, the value for
the ultimate creep coefficient given in Table 1 is about 2.5.

Thus suggested in the previous paragraphs is the nature of
the theoretical as well as empirical vagueness of the approaches
available for applying creep or shrinkage plus creep coefficients
to instantaneous deflections when computing creep or shrinkage
plus creep deflections.

The effects of cracking on instantaneous deflections were
studied in Section IV and are further evident with regard to
time-dependent deflections in Fig. A.10. For example, the
maximum moment for the simple beam SB-3 was about twice the
moment corresponding to first cracking, while the simple beam
SB-1 was uncracked. However, the time-dependent deflection
coefficients at 2 months were 0.146/0.153 = 0.95 for SB-3 and
0.0435/0.0410 = 1.06 for SB-1, indicating that extent of
cracking does not seem to materially affect one's choice of
time-dependent deflection coefficients.

Tabulated in Table 7 are the instantaneous curvatures,
and curvatures at the end of the testing period for all of the
gage locations. These curvatures were obtained by dividing the
algebraic difference in the top and bottom gage readings by the
distance between them at each gage location.
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From Table 7, Cols. D and E, it can be seen that even though
the design stresses for the l-bar beams were the same, the ratio
of experimental instantaneous curvatures to moment for the 3-bar
beams were of the order of twice that of the 1l-bar beams, which
were subjected to the correspondingly smaller loads. This demon-
strates the tendency for relatively large steel-percentage beams
to undergo considerably greater curvatures and deflections when
designed for the same allowable stresses by elastic theory.
Similar behavior is seen for the instantaneous plus creep curva-
tures in Table 7, Cols. L and M but to a slightly lesser degree.

Interesting results are shown in Table 7, Cols. H and I where
in every case the ratios of time-dependent to initial curvatures
are larger in the smaller moment regions. The same is true for
the creep ratios (with one exception in eight cases -- and it
thought to be insignificant) of Table 7, Cols. N and O, This
would suggest that in regions of higher moment (within working
stress ranges -- that is, below any high overload range) larger
early creep strains tend to cause greater reductions in concrete
stresses with accompanying greater reductions in creep curva-
tures with time. Involved is the phenomenon of the shifting
neutral axis with time as a result of the shrinkage and creep
behavior of a nonhomogeneous (particularly so when cracked),
composite steel-concrete structural member.

The brief discussion of this section serves only to demon-
strate a number of fundamental phenomena .regarding instantaneous
and time-dependent characteristics of reinforced concrete beams
as observed in a limited number of test results. Methods for
computing deflections that take into account most of these
effects have been discussed in this report and in the case of
cracking effects and shrinkage warping, new procedures set forth,
It appears that the gap between fundamental answers related to
deformational behavior of such beams and empirical approaches
for controlling structural deflections remains a formidable but
not impossible one to materially close in the not too distant
future.
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VI. CONCLUDING REMARKS

An attempt has been made to study the complex deforma-
tional behavior of reinforced concrete flexural members as
influenced by the interrelated effects of cracking, shrink-
age warping, creep, tensile and compressive steel percent-
age, continuity, moment redistribution in statically
indeterminate beams, etc. Initially, a detailed review
and discussion of existing methods, guides and rules of
thumb for predicting deflections was presented for the
purpose of examining the nature of the deflection problem.

A new and practical method was presented for computing
shrinkage warping which agrees more closely with test data
than previous methods advanced. See Egqs. (28), (29), or
(30) for the appropriate curvature expressions to be inter-
grated acros§ the span. For example, the mid span deflec-
tion A = $L°/8 for a simple span. However, only shrinkage
warping of uncracked specimens has been investigated experi-
mentally to the writer's knowledge, and effects of cracking
on shrinkage curvature in unsymmetrical sections represents
an area requiring further study. A number of interesting
observations related to effects of steel percentage, crack-
ing and the phenomenon of the shifting neutral axis with
time on deflections were made from the experimental
curvatures and deflections.

Consideration was given to the effects of cracking on
deflections and recommended design procedures presented for
predicting these effects. A method was demonstrated for
including the effect of moment redistribution due to crack-
ing in computing deflections of statically indeterminate
beams. Deflections computed by these procedures compared
reasonably well with the experimental data obtained in this
investigation and other data on deflections of simple and
continuous reinforced concrete beams. See Eqs. (23) through
(26). Comparisons are tabulated to show the nature of the
agreement that can be expected between analytical and
experimental deflections.

It appears that future studies should concentrate on
the effects of random cracking on deflections since both
instantaneous-load cracks and progressive cracking under
sustained loads in many cases play a dominant role in
determining deflection behavior. In the case of statically
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indeterminate beams, moment redistribution effects
resulting from shrinkage, creep and cracking also
drastically influence deflections in many cases and
represent an area that has not been extensively explored.

The problem of deflection prediction and control of
reinforced concrete flexural members involves a number of
complex and interrelated influences herein discussed. 1In
addition to the largely empirical approaches that constitute
the main tools for present-day prediction of deflections,
more attention should undoubtedly be given in the future to
the statistical aspects of the problem as related to
statistically optimum designs, confidence intervals for
computed deflections, etc.
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Table A,l-=Continued

corresponding simple and continuous beams (the l-bar beams--~also the 3-bar

- beams); also that the computed maximum concrete compressive stresses are the
same at all points along the l-bar and 3-bar simple beams--also the same at
all points along the l-bar and 3-bar continuous beams.,

8In the case of the continuous beams, all moments are computed by elastic
theory for prismatic members,

Dyhere 3 numbers appear, they refer to DL + SL = Total Load effects, re-
spectively., One number refers to total load effects.

CMaximum stresses f. and f_ were computed using the cracked transformed
section properties and a modular ratio of 6, according to the AASHO
Specifications,

dComputed using v = V/bd and u = v/ 3, jd.

®Maximum concrete tensile stresses fi were computed using the uncracked
transformed section properties.
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L000 )

3000 //AV
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0 2 i 6 8 10 12
Concrete Strain, in/in x 10-,4

Concrete Stress, psi

£, = 5130 psi; E = L. x 10° psi

Fig. A.l--Average 28-day concrete stress-strain
curve (6" x 12" cylinder tests)



Concrete Shrinkage Strains, in/in x 106
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Shrinkage Specimen With No Steel
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300

Shrinkage Specimen With Three Bars,B-3,(p=2.07%)

0

100]

X D}

A O

300
0 30 60 90

Concrete Age in Days (initial

readings taken at age L days)

A--Top Gages at Quarter-Point of Span
B-~-Bottom Gages at Quarter-Point of Span
C--Top Gages at Midspan

D--Bottom Gages at Midspan

HP>aoe

Fig. A.2--Concrete shrinkage versus time curves for
specimens containing different steel percentages
(duplicate shrinkage specimens were used)
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Average Shrinkage Curvatuge

Concrete Age in Days (initial
readings taken at age L days)

©® A--Shrinkage Specimen With Three Bars, B-3, (p=2.07%)
@ B--Shrinkage Specimen With One Bar, B-1, (p=0.67%)

Fig. A.3--Average shrinkage curvature along
members versus time curves
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600 Midspan Gages (Simple Beams)
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Quarter-Point Gages (Simple Beams)

Concrete Strains Under Dead-Load 6
Plus Superimposed Load, in/in x 10~

Total (Instantaneous Plus Time-Dependent)

L0O
o o —e—g o o~
4 v\
0 . ‘&ﬂ_‘
0 20 Lo 60

Time in Days (time zero taken at
age 28 days--age beams were loaded)

© --Bottom Gage (Tension) For Three-Bar Simple Beam,
SB-3, (p = 2.07%, we Voo =5.5)

@ --Top Gage (Compression) For Three-Bar Simple Beam,
SB-3, (p = 2.07%, WSL/WDL =5.5)
A --Bottom Gage (Tension) For One-Bar Simple Beam,

SB-1, (p = 0.67%, wgy/wp;, =2.0)

1§ --Top Gage (Compression) For One-Bar Simple Beam,
SB-1, (p = 0.67%, WSL/WbL =2,0)

Fig. A.l--Total (instantaneous plus time-dependent) concrete
strain versus time curves for two simple beams
with different steel percentages and loading,
but the same computed elastic concrete stresses
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Middle Support Gages (Continuous Beams)

--Negative Moment Region
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e ,

-100
0 20 Lo 60

Time in Days (time zero taken at
age 28 days--age beams were loaded)

® --Bottom Gage (Tension-Pos.Mom., Compression-Neg.Mom.)
For Three-Bar Continuous Beam,LB-B,(p=2.07%,wSL/wDL=S.5)

@ --Top Gage (Compression-Pos,mom., Tension-Neg.Mom.) For
Three-Bar Continuous Beam,LB-3,(p=2.07%,wg; /Wy =5.5)

A --Bottom Gage (Tension-Pos.Mom., Compression-Neg.Mom. )
For One-Bar Continuous Beam,LB-l,(p=O.67%,wSL/wa=2.O)

1 --Top Gage (Compression-Pos.Mom., Tension-Neg.Mom.) For
One-Bar Continuous Beam,LB-1,LB-1,(p=0.67%,wgr /Wy =2.0)

Fig. A.5--Total (instantaneous plus time-dependent) concrete
strain versus time curves for two continuous beams
with different steel percentages and loading, but
the same computed elastic concrete stresses
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Midspan Gages (Simple Beams)
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Time in Days (time zero taken at
age 28 days--age beams were loaded)

Instantaneous Plus Creep Strains Under Dea
Load Plus Superimposed Load, in/in x 10~

® --Bottom Gage (Tension) For Three-Bar Simple Beam,
SB-3’ (p = 2.07%, wSL/wDL = 5.5)

@ --Top Gage (Compression) For Three-Bar Simple Beam,
SB-B’ (p = 2'07%’ WSL/WDL = 5'5)

A --Bottom Gage (Tension) For One-Bar Simple Beam,
SB-1, (p = 0.67%, wgr/wpr, = 2.0)
I --Top Gage (Compression) For One-Bar Simple Beam,

SB-1, (p = 0.67%, wSL/wDL = 2.0)

Fig. A.6--Instantaneous plus creep strain versus time curves for
two simple beams with different steel percentages and
loading,but the same computed elastic concrete stresses
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two continuous beams with different steel percentages and
loading, but the same computed elastic concrete stresses
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I. INTRODUCTION

Part II of this study consists of a rerun of tests
in Part I and an analysis of the resulting data.

The tests of Part I were rerun because some of the
beams were honeycombed and one of the beams (1-Bl) was
cracked while being moved into position for loading.

Concrete for the beams of Part II was vibrated
during pouring in order to minimige the honeycomb,

It was judged desirable to determine the effect, if
any, of the condition of the beams of Part I upon the
results of the study.

II, DESCRIPTION OF EXPERTMENTAL INVESTIGATION

A total of four beams was tested, two simple beams
and two continuous beams (each with two equal spans
contimious over a center support). One simple beam
(SB - 1) and one continuous beam (LB - 1) were reinforced
with one #3 bar., The other simple beam (SB - 3) and
contimious beam (IB - 3) were reinforced with three #3 bars.
411 spans were 9' long, the continuous beams having an
overall length of 18'. 1In addition to the four test
beams, six shrinkage specimens were tested. The shrinkage
specimens were the same size as the simple beams. Two
were reinforced with three #3 bars, two with one #3 bar,
and two were without reinforcement. The shrinkage specimens
were placed on one side on a smooth, oiled, plywood surface
in an attempt to eliminate any frictional effects which might
influence the shrinkage measurements. Details of the test
beams are shown in Fig, 3 of Part I of this study.

The properties of the materials were as follows:

Concrete SIUMD « o o o o o o o o o 023"

28 day concrete cylinder strength. .LL50 psi
Concrete modulus of elasticity . . «3.5 X 105
Tensile yield point of the steel . .L9,000 psi

psi



The concrete strains were measured by using a Whittemore
mechanical strain gage with a 10" gage length, Gage points
were imbedded near the top and bottom of each beam at six
different locations giving a total of 12 gages and 2l gage
points for each beam, Six gages and 12 gage points were used
on each shrinkage specimen. Temperature effects on strains
were eliminated through the use of a temperature bar made of
invar metal having the same coefficient of thermal expansion
as the concrete,

ITI, TESTING PROCEDURES

A1l beams were loaded at age 28 days with iron bricks,
The bricks were spaced continuously in the 3 - bar beams and
uniformly in the 1 - bar beams. The loading was the same as
in Part I of this study and can be seen in Fig, L of Part I.

The deflection and strain readings reported were the
average of those on each side of the beam in the same
position in order to eliminate any torsional effects. Also,
only the average of corresponding strain readings on the
shrinkage specimens and test beams were reported,

IV, COMPARISON OF TEST RESULTS

Figures in Part II correspond to figures in Part I as
follows:

Part II Part I
Fig. 1 corresponds to Fig. 8
Fig. 2 n " Fig, 10
Fig. 3 " " Pig. 11
Fig. L " " Fig, A-1
Fig. 5 " " Fig, A-2
Fig, 6 " " Fig. A-3
Fig. 7 " " Fig, A-lL
Fig. 8 " " Fig. A-5
Fig. 9 n " Fig, A=b
Fig. 10 0 " Fig, A-7
Fig, 11 " "W Fig. A-8
Fig, 12 " " Pig, A-9
Fig. 13 " " Fig, A-10

A comparison of Fig. li of Part II with Fig, A-1l of
Part I shows that both f& and E were somewhat higher in



e a—

—1 (71

1

L4 L

(]

C1 1

I

tests conducted in Part I as opposed to those of Part II,
The modulus of elasticity was 26% higher in Part I as
compared to the modulus of elasticity of the concrete in
Part II,

Figures 1 and 5 of Part II and Figures 8 and A-2 of
Part I show that the shrinkage was about 20% greater in
Part I than in Part II, This was to be expected because
a rich concrete will tend to shrink more than a lean one,
In general, all other curves for strains and deflections
ran higher in Part II than in Part I by amounts ranging
from 15% to about 40%. Since the modulus of elasticity
of the concrete in Part I was 26% higher than in Part II,
these larger strains and deflections appear quite reasonable,
The only exceptions to this occur in the tension gage
creep coefficients of Fig. 2 and the concrete strains
in the positive moment region of Fig. 8, These were about
the same to slightly lower in Part IT as compared to Part
I. In the writer's opinion, this was probably caused by
tension cracking of the concrete and a redistribution of
moments in the continuous beams,

V. CONCLUSIONS

The test results in Part II agree quite well with
those of Part I, Strains and deflections are somewhat higher
in the second set of tests than in the first, but this is
caused by the lower modulus of elasticity of the concrete
in Part II, Because of the close agreement of the test
results, it is the writer's opinion that neither the
honeycomb of the test beams in Part I or the hairline
crack of beam L - Bl had any effect on the data.
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Fig. 7--Total (instantaneous plus time-dependent) concrete
strain versus time curves for two simple beams with
different steel percentages and loading,; but the
same computed elastic concrete stresses
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