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ABSTRACT 

LJ Presented in this report is a study of instantaneous and 
· time-dependent deflections of simple and continuous reinforced 
concrete beams with particular emphasis on effects of cracking, 

Ccontinuity, shrinkage warping and steel percentage. A study of 
the pertinent factors affecting both initial and time-dependent 
deflections of reinforced concrete flexural members is made, 

n and a summary of existing methods, guides and rules of thumb 
L' for predicting these effects presented. 

A new and practical method is presented for computing 0 shrinkage warping which agrees more closely with test data than 
previous methods advanced. A number of observations are made 
with regard to the experimental curvatures and deflections 

n obtained which refer to the effects of steel percentage, 
L; cracking and the phenomenon of the shifting neutral axis with 

time on deflections. 
r LJ A detailed analysis is made of the effects of cracking on 

deflections and recommended design procedures presented for pre­
dicting these effects. A method is demonstrated for including 

ln the effect of moment redistribution due to cracking in computing 
_, deflections of statically indeterminate beams. Deflections com­

puted by these procedures compared reasonably well with the 

[ 
experimental data obtained in this investigation and other data 
on deflections of simple and continuous reinforced concrete beams. 
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1.1 

INTRODUCTION 

Object and Scope of the Study 

G With the present-day tendency toward the use of higher 
strength concrete and reinforcing steel, and shallower sect­
ions, the problem of deflections is assuming greater and 

\. greater importance. The purpose of this investigation is to 
LJ consolidate information on deflections as much as possible 

and to study the complex defo~mational behavior of reinforced 
G,1 concrete beams as influenced by the interrelated effects of 
Lj cracking, shrinkage warping, creep, tenaile and compressive 

steel percentage, continuity, moment redistribution in stat-
, ically indeterminate beams, etc. 

lJ 
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L 

C. 

I) [ 

I 
1C 

C 

The experimental phase of the program was designed to 
elucidate certain aspects of the deflection problem not here­
tofore clearly defined, such as the relative effects of high 
quality concrete, effects of sustained loads sufficient to 
cause moderate cracking, and the effects of special combina­
tions of· singly-reinforced steel percentages in companion 
simple and continuous beams. 

Particular emphasis is placed on a study of the effects 
of random cracking on deflections; especially with regard to 
moment redistribution in continuous beams resulting from 
cracking. Shrinkage warping and creep deflection are also 
analyzed from both theoretical and empirical points of view. 
Analytical procedures for predicting the various aspects of 
the deflection problem are discussed and, in certain cases, 
new procedures advanced. Comparisons are made with test 
data to show the. nature of the agreement that can be expected. 

0 
1.2 Notation 

Avg. Ieff average effective moment of inertia for simple 

[ As 
A' s 
a 

(; b 
LJ b' Jc 

c:t 
d 

I [: d' 
I -

1-, EI 

l ·r 
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l 

spans (Eq. 24) 
area of tensile steel 
area of compressive steel 
4 . cremental length of beam 
width of beam at the compression side 
width of beam at the tension side 
constant, also used to denote compressive force 
creep coefficient defined as ratio of creep strain 
to initial strain 
total depth of beam 
effective depth of concrete section 
distance from centroid of compressive steel to 
extreme compressive fiber 
flexural rigidity 



Ect 

e 

fbb 
fs 
fy 
H 
Iav 

kd 

L 
M 
Mer 
m 
max 
n 
net 
p ' 

p' 

Pw 
Pf 

Q 
T 

2 

--modulus of elasticity of concrete, short duration of 
loading 

--reduced or sustained modulus of elasticity of con­
crete, long duration of loading 

--modulus of elasticity of steel 
--average effective modulus of elasticity of steel 

when participation of tensile concrete is taken in­
to account (see Eq. (9)) 

--distance between the centroids of the uncracked trans­
formed section (using net> and the steel area 

--distance ' between the centroids of the gross concrete 
section and the steel area 

--compressive stress in concrete 
--concrete compressive strength at age 28 days, or 

other age if specified 
--IDOdulus of rupture of concrete 
--steel stress 
--yield point of steel 
--relative humidity (H • 70 for 70% herein) 
--average effective moment of inertia for continuous 

beams (Eqs. 25 and 26) 
--moment of inertia of the cracked transformed section 
--moment of inertia of the uncracked transformed sec-

tion using net 
--effective moment of inertia at an individual section 

(Eqs. 21, 22, 23) 
--moment of inertia of the gross concrete section (neg­

lecting all steel) 
--moment of inertia of the uncracked transformed sect­

ion 
--distance from extreme compression fiber to neutral 

axis for cracked transformed section 
--span length 
--bending moment of beam 
--moment corresponding to flexural cracking 
--a constant power 
--subscript denoting maximum value 
--modular ratio defined as Es/Ee 
--increased modular ratio defined as Es/Ect 
--tensile steel percentage defined herein as (As/bd) 

(100) % 
--compressive steel percentage defined herein as 

(AMbd)(lO0) 1. 
--steel percentage in T-beams defined as (A8 /b'd) 
--steel percentage in T-beams defined as (Asf/b'd), 

where As£= (0.85)(f~)(b - b')(t)/fy 
--equivalent concentrated load 
--tensile force 

Ts --total compressive force induced in steel by shrinaage 
t --flange thickness for T-beams 

. / 
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J . 
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--denotes time interval, also used as subscript 
denoting time-dependent 

--subscript denoting ultimate value 
--beam shear 
--uniformly distributed load, also unit weight of 

concrete in Eq. (1) 
--uniform dead-load 
--uniform superimposed-load 
--beam deflection 
~-distance from neutral axis to the extreme fiber in 

tension 
--maximum deflection 
--computed maximum deflection using the cracked 

transformed section moment of inertia 
--specific creep or unit creep strain defined as creep 

strain per unit stress 
--unit strain 
--steel strain 
--free shrinkage strain 
--beam slope 
--unit stress 
--curvature or angle change per unit length of beam 
--curvature due to shrinkage warping 
--equivalent concentrated angle change 
--coefficient taking into account the participation of 

concrete in tension (see Eq. 9) 
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II. NATURE OF THE DEFIECTION PROBLEM FOR REINFORCED CONCRETE . 
FIEXURAL MEMBERS 

2.1 Primary Factors Involved in Deflection Prediction and 
Control of Reinforced Concrete Flexural Members 

The problem of predicting and controlling deflections of 
reinforced concrete flexural members under working loads is 
extremely complex as a result of the large number of signifi­
cant yet uncertain factors involved. A partial list and brief 
discussion of the more important factors follows: 

' i ·, 

7 

I 

1. Lack of accurate knowledge, in advance, of pertinent 
concrete properties; such as modulus of rupture and c_ompressive 
strength, modulus of elasticity, and shrinkage and creep charac- J 
teristics. Knowing minimum specified strengths is not enough 
since this does not provide sufficient information of, for 
example, shrinkage and creep behavior. Higher strength con­
cretes may or may not shrink and creep less than lower strength .:-, 
concretes. It can obviously be said, however, that when minimum 
strength and modulus values and.maximum shrinkage and creep 
values are useq., computed deflections will tend toward the \ 
high side. 

2. Ambient temperatures and humidities, which affect the 
items in 1. The primary influence here is usually the effect 
of humidity on shrinkage and creep. 

3. Concrete age when sustained loads are applied, which 
primarily affects creep behavior. 

-, 

! 

7 
4. The effective section properties under instantaneous : 

load along the beam, including primarily the effect of "extent' __ J 
of cracking''. The cracked and uncracked transformed section 
properties are the two theoretical extremes and then only for \ 
linear-elastic materials. Differences in the gross and uncracked - 1 

transformed section properties are seldom worth considering, and 
the gross section is much more convenient to use for design pur­
poses. Involved in the determination of the effective flexural 
rigidity is the contribution of concrete in tension between 
cracks. Also involved is the effect of steel percentage, varying , 
depths and the flanges of T-beams (especially for continuous i 
beams) on the effective section properties along the beam. ~ 

5. Difficulty in determining shrinkage warp:ing and creep 
deflections, including the effects of a given crack pattern as 
well as the phenomenon of progressive cracking under sustained 
loads. Involved is a movement of the neutral axis with time I 
as a result of the time-dependent deformations in the non- J 
homogeneous composite concrete-steel structural member~ Also of 

\. 
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' [ importance is the effect of compression steel in reducing 
shrinkage and creep deflections. This is especially important 
with regard to ultimate strength designs where it is usually 

j more economical, from a strength standpoint, to place additional 
L , steel in tension rather than use compression steel. 

[ 
6. The determination of what constitutes critical 

· deflections; that is, the difficult question of serviceability. 

[ 

[ 

7, Other factors include , the increase (above the 28-day 
values used in design) in concrete strength and modulus of 
elasticity with time, the effects of bond creep, member size, 
slab action; etc. 

The difficulties involved in rationally analyzing the above 
effects are virtually insurmountable in the average design 

[ 
office if not in the research office. The problem appears to be 
primarily one of a statistical nature involving statistically 
optimum designs and confidence intervals for computed deflections. 
The large number of variables involved, the variability of these 

I r parameters and the interdependence of most of the variables 
L strongly supports this point of view. Nevertheless, a detemin-

11 istic fomula or fomulas, however approximate, which incorporates 
r, all of the factors that may be pertinent in a given design 

'\ l_: situation would be of benefit to both the designer and the 
researcher. It is to this task that the report herein addresses 

' ) 

r- itself, particularly with regard to the effects of cracking, 
l ; warping, continuity and steel percentage. 

r 
L 

r. 
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2.2 Review and Discussion of Existing Methods, Guides and Rules 
of Thumb for Predicting Deflections 

Presented in the following paragraphs is a brief discussion 
of existing methods, guides and rules of thumb for determining 
deflection parameters and deflections themselves of reinforced 
concrete flexural members. Items 1 through 6 of Section 2.1 are 
considered in that order: 

1., 2. and 3. Concrete Properties: 

Values of modulus of rupture and modulus of elasticity of 
concrete are not accurate functions of compressive strength 
alone. Nevertheless, for most practical applications, the 
following approximate formulas are usually satisfactory: 

or 

1 , 2Ec = 33 ~ (1) 

Ec 57,700 (if 
3f~b= 7.5 (if 

for concrete weighing 145 pcf (2) 

(3) 
I 
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where E is the instantaneous modulus of elasticity, w is the 
unit weight of concrete, f~ is the compressive strength and f~b 
is the modulus of rupture. 

Concrete strength, modulus of elasticity, shrinkage and 
creep continue to increase for very long periods of time. In 
the case of shrinkage and creep properties it is only possible 
to generalize within rather broad limits, and accurate test data .~ 
which incorporates the effects of local conditions should be 

I 

used when available. In the absence of test data, the following · 
shrinkage and creep information is often useful: .J 

Schorer's4 formula is probably adequate for calculating 
shrinkage strains for most design purposes: 

Esh= 12.5 x 10-
6 

(90 - H) (4) 

where Esh is the free shrinkage strain in inches per inch and 
His relative humidity (H = 70 for 70% rel. hum.). This formula 
gives an ultimate or design total shrinkage strain as a function 
of relative humidity, but other variables account for rather 
wide variations under certain conditions. However, most 
shrinkage data agree with Eq. (4) within 25%. 

In considering the effects of creep on the deflection of 
concrete members, the use of a unit creep strain It (creep per 
unit stress) or a creep coefficient Ct (ratio of creep strain to 
initial strain) amounts to the same thing, since the concrete 
modulus Ec must be brought in in either case and 

This is seen from the relation 

Creep Strain 

where 

( !Tconstant) Jt = (€.initial) Ct 

( er-constant) / ( finitial) 

(6) 

(7) 

Which to use is a matter of convenience depending on whether it 
is desired to apply the creep factor to applied stress or strain 
when computing creep strain in Eq. (6). 

Approximate ultimate values for the creep coefficient for 
normal weight concrete under average design conditions are shown 
in Table 1 , where, in each case, the larger of the values 
corresponds to an earlier loading age. 
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Table 1. Creep Coefficients 

n 
Ultimate Ct = C (Ratio of Ultimate Creep Strain to u' 

Initial Strain) 

Concrete Average Relative Humidity 
Strength 100% 70% 50% 
Ordinary 1 - 2 1.5 - 3 2 - 4 

High 0.7-1.5 1 - 2.5 1.5 - 3 .5 

4. Effective Section Properties Under Short-Term Loading [ 
The stress distribution and effective moment of inertia of 

,r:.einforced concrete beams vary considerably ~long the length of 
I 1e beam. In regions of small moment the concrete works in 
Lansion, and the uncracked transformed section properties are 
effective in determining stresses and deflections under short-

[
3rm loads. In regions where the bending moment is greater than 
,1e moment corresponding to flexural cracking, Mer, the concrete 

cracks, although tensile concrete between cracks still contributes 
[ ~gnificantly to the flexural rig~dity of th~ beam. . 

-- The cracked transformed section properties (neglecting all 
concrete on the tension side of the neutral axis) are not 

[
1reasonable for use in calculating stresses in cracked regions 

~ __ ;ider working loads, because the governing stresses usually 
/ refer primarily to maximum moment sections. Also, any discrep-

111cies encountered in computing stresses using the cracked 
l.Jction properties are on the high or safe side, and are re-

. fleeted, at least in part, in well tested safety factors. The 

D
iestion with regard to deflections is serviceability, not 
1fety ; and here it is not generally possible to provide limits 
1 serviceability for all types of structures. In other words, 

there is more of a premium on being able to predict deflections 
j :curately, than to compute fictitous numbers called stresses. 
'~~-so, deflections are seen and felt. 

_r The effective flexural rigidity can vary greatly along a 
t_;inforced concrete beam in regions of cracking. The ratio of 
uncracked to cracked transformed moment of inertia for "low" 
~,eel-percentage beams is often of the order of five and larger. 
1 le effective moment of inertia at any section that is cracked 
Y..J s some value between the uncracked and cracked moments of 
inertia, which depends primarily on the magnitude of the moment 
flr a given beam and materials. 
l , 
L. 

An acceptable method in many cases is to simply use an 
cfierage of the uncracked and cracked transformed moments of 
j ·ertia fgr the entire length of beam. An European Concrete 
Committee.? recommends that the gross-section flexural rigidity 
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be used for that part of the load that produces first cracking 
and a modified cracked-transformed-section flexural rigidity for 
the remainder of the load, with the computed deflection not to 
exceed the 11 cracked transformed section 11 deflection. This 
provides a consideration of loading stages but does not account 
for variations i~ flexural rigidity along the beam. With the 
question of loading stages, however, arises the thought that the 
portion of the beam that cracks under maximum load no longer is 
uncracked (even under the first increments of reload) upon 
reloading. 

Since the sections being discussed are gross and transformed 
concrete sections, the concrete modulus of elasticity is, of 
course, used in any flexural rigidity (EI) expression. 

Yu and Winter
6 

developed an expression for an average 
effective moment of inertia to take into account the participa­
tion of tensile concrete in resisting deflections. Their 
results were stated in the following form: Multiply (and thus 
reduce) deflections, computed using the cracked transformed 
section properties, by the factor 

where M1 

(1 - b 1Ml) 
M 

= 0.1 (f 1 )2/3 (D) (D - kd) 
C 

M = moment under working loads 

b 1 width of beam at the tension side 

D = total depth of the beam 

(8) 

The derivation of this expression followed an elastic-theory 
approach with the factor 0.1 having been·determined empirically 
from beam tests. 

The moment M was a pure bending moment in the derivation, 
and the factor 0.1 was determined on the basis that Mis the 
maximum moment in the span for the beams tested. It does 
suffice to suggest that the effective moment of inertia at a 
given section might be obtained by dividing the cracked 
transformed rr..oment of inertia by some factor similar to Eq. (8), 
where Mis the moment at the given section. 

The modification factor given by Eq. · (8) has a similar 
effect on computed deflections as the method of Murashev7 for 
taking into account the participation of tensile concrete in 
resisting deflections. This method uses the cracked transformed 

i 
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·i 
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J 
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n, moment of inertia and an increased effective steel modulus of 
L elasticity, E, given by Eq. (9). 

r 
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E = E/tf J Y1 ~1.0 (9) 

where }?1 = i - C (Mcr/M) 2 and C is a constant. This method is 
based on the consideration that between cracks the steel stress 
and hence deformation is less than right at the cracks; there­
fore, the average effective steel modulus of elasticity, E, 
should be greater than the actual steel modulus, E, at the cracks. 
A value for the constant, C, of 2/3 was recommended. 

Specific locations of sections of first cracking can be 
determined by Eq. (10), 

(10) 

where Mer is the moment corresponding to flexural cracking, 
fbb is the modulus of rupture, I~cr is tbe moment of inertia 
of the uncracked transformed section and Yt is the distance 
from the neutral axis of the uncracked transformed section to 
the extreme fiber in tension. For most purposes and most cases, 
Eq. (10) can be replaced by the simpler Eq. (11), 

(11) 

where Ig is the moment of inertia of the gross concrete section 
alone (neglecting all steel) and Yt refers to the same gross 
concrete section. 

There would be 2 of these Mer-sections in a typical 
reinforced concrete simple beam under service loads. Where 
cracking occurs in both positive and negative moment regions, 
4 such Mer-sections would exist in fully continuous beams and 
3 in beams with only one end continuous. Consideration of the 
effects of continuous T-beam flanges and beams of varing depths 
would affect the above only in details. Also, the effect of 
varying tensile and compressive steel percentages along the 
beam would usually be a minor factor in locating a given Mer­
section and would not be involved at all when Eq. (11) is used. 

At a time when low working stresses were used, it was 
deemed satisfactory to use the cracked transformed section pro­
perties in computing deflections. An American Concrete Institute 
Deflection Committee ReportB in 1931 recommended this for general 
use. However, in the last twenty-five 'years or so it has become 
common practice to use the gross section properties in com­
puting deflections under working loads. The Portland Cement 
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Association has recommended this practice for many years. 

The new ACI Code2 contains the same gross-section pro­
vision but modifies it slightly to provide for the use of the 
cracked transformed section properties when pfy is greater than 
500. This is an attempt to guard against underestimating 
deflections (using the gross moment of inertia) when high steel 
stresses exist, such as where high working steel stresses are 
used, or whe11 high yield-point steel is used in ultimate strength 
design. 

In ultimate strength designs by Whitney's method9, a 
balanced steel percentage is given by Eq. (12). 

Pbal o.46 fb 
fy 

(12) 

Investigators lO, 11 have felt that a deflection warning should 
be sounded when the ratio p for singly-reinforced beams, (p - p') 
for doubly-reinforced beams and (pw - Pf) for T-beams exceeds 
0.18 f 6/f. This ratio is close to the balanced steel ratio by 
elastic th~ory and less than one-half the balanced design ratio ·. 1 

by ultimate strength theory. 

For singly-reinforced beams the marginal steel percentage is 

P = 0. 18 fb/fy 

and pfy = 0.18 fb 540 when fb = 3000 psi. 

Hence the ACI value of pfy = 500 is selected for ordinary 
strength concrete. 

(13) 

For the cases where pfy is less than 0.18 f 6, the previous 
reasoning calls f~r the use of the gross section properties. _j 
However, the PCA showed that the use of gross-section proper­
ties could be dangerous when steel percentages are low and where ~ 

working stresses are relatively high. It follows from the · 
previous observation that the effect of steel percentage alone 
on effective flexural rigidity tends to be contradictory. 

The AASHC3 and others have for a long time advocated the use . 
1 

of the gross-section properties to determine the flexural rigidity- · 
of continuous beams for purposes of indeterminate analysis as 
well as for computing deflections. This, admittedly, has been a · I 
rather vague compromise, but one that was dictated by the nature __J 

i 
- I 
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of the problem. In the case of continuous T-beams (flange 
usually cracked in negative moment regions) and beams of 
varying depth, an average of the positive and negative moment 
section properties is often used in estimating deflections 
using conventional formulas for prismatic members. 

Since the use of the cracked transformed moment of inertia 
tends to overestimate deflections, a reduced modular ratio (such 
as n = 8 for all strength concretes recommended by the AASHo13 
for computing deflections under short-term loads) is often used 
in an attempt to offset the high computed deflections. This 
reduced modular ratio has the same effect as that provided by 
an increased effective concrete modulus of elasticity. Another 
technique that has been suggestedl4 is to reduce the deflections, 
computed using the cracked transformed moment of inertia, by the 
following empirical factors: 

Deflection, 6. 0,9 A~r for simple beams 

= o.8 .6. ~r for one end continuous (14) 

= 0.7 A!r for both ends continuous 

where .d~r is the computed deflection using the cracked trans­
formed moment of inertia. For continuous beams, the section 
properties corresponding to the points of maximum positive and 
negative moments are usually used in this method as constant I's 
throughout the regions of positive and negative moment, 
respectively. 

The misuse of the cracked transformed section properties 
tends to be more pronounced in continuous beams than in simple 
beams, as indicated by the factors in Eqs. (14). A greater 
length of beam will normally be uncracked in continuous beams 
as compared to simple beams (moment gradients are greater in 
continuous beams and hence maximum moments drop off faster). 
For example, consider the following extreme case: if a uniformly­
loaded, continuous, prismatic reinforced concrete beam with the 
same positive and negative moment reinforcement has a cracking 
moment capacity of wL2/24, 0.821 or 82% of the span will be un­
cracked. For the same simple beam, but with the load multiplied 
by 2/3 to account for the smaller allowable load on the simp+e 
beam (the ratio of the maximum moments for the two cases), only 
0.291 or 29% (18% if the load were not reduced) of the span will 
be uncracked. However, certain factors such as distribution of 
loads, varying section depth, steel percentage, etc., can cause 
the use of these fa.ctors to lead to erroneous results. 
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5. Shrinkage Warping and Creep Deflection 

Concrete shrinkage induces stresses in both statically 
determinate and indeterminate reinforced concrete structures. 
In determinate members the shortening of the beam resulting 
from shrinkage is resisted by the reinforcing steel, inducing 
compressive stresses in the steel and tensile stresses in the 
concrete. The tensile concrete stresses are maximum in the 
vicinity of the reinforcement and thus combine with tensile 
stresses resulting from transverse loads to cause additional 
cracking. Shrinkage of the girders in redundant frames also 
induces additi.onal bending moments which are subject to direct 
analysis. 

When reinforcement is unsymmetrical, shrinkage causes a 
nonuniform strain distribution which results in warping of the 
cross-section. Although shrinkage and creep are undoubtedly 
interdependent, the coefficients defining the magnitude of 
these effects are usually expressed separately for practical 
purposes. There are exceptions to this that are discussed 
later in this section. Even though the effects of shrinkage 
might be considered (in an approximate manner) apart from those 
of transverse load, shrinkage warping is obviously affected by 
cracking and therefore by transverse load. 

. I 
I 

I 
J 

I 
_I 

. I 
- _j 

_J 

J 
Shrinkage warping formulas have begn developed for both 

uncracked and cracked sectionsl2, 15, 1, 17, in which an 
equivalent elastic analysis is employed. In considering cracked 

1 sections, however, the effect of load and shrinkage must be 
considered simultaneously, since the extent of cracking is a 
direct function of the transverse load. Since shrinkage warping 1 
frequently has only a secondary effect and seldom a predominant 
effect on total deflections, the simpler uncracked section 
method is probably just as adequate as the other method and can 
be used without regard to effects of transverse load, 

Considering an uncracked transformed section (either singly . 
or doubly-reinforced beams, with or without flanges), the 
warping curvature at any cross-section due to shrinkage is given J 
by 

where 

,i., ·- M "l'sh - EI 

A-.. = warping curvature resulting from shrinkage 
'+'sh 

(15) _! 

l 
:~ Note that Ferguson16 did not include the effects of creep in ,-I 

the expression for EI as does Eq. (15). 
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distance between the centroids of the uncracked 
transformed section (using net= Es/Ect) and the 
steel area 

sustained modulus of elasticity as defined by Eq. 
(19) 

= moment of inertia (using net= Es/Ect) of the 
uncracked transformed section 

(16) 

= total compressive force induced in the ·steel 

tensile steel area 

= compressive steel area 

= free shrinkage strain 

= modulus of elasticity of steel 

For singly-reinforced beams, A$= 0. When As, A$ and e are 
essentially constant along the span, the maximum shrinkage 
deflection for a simple beam becomes, 

b,. = (17) 

where b.. is the midspan deflection and Lis the span length. 

In considering the distribution of shrinkage strains and 
corresponding shrinkage warping, creep effects should be ;i,nclude9, 
because shrinkage stresses are sustained stresses. However, the 
use of the usual creep factors, for concrete under constant 
compressive stress, are rather nebulous, since shrinkage stresses 
are variable (increasing at a decreasing rate with time), and 
are tensile in nature. Also, the effective concrete modulus of 
elasticity of interest here should refer to concrete in tension. 
It is obvious from this discussion that the solutions of 
shrinkage warping using quasi-elastic concepts leave much to be 
desired. They, nevertheless, do provide rough estimates of 
shrinkage deflections that can be compared with experimental 
data with partial success. 

Miller18 has presented an interesting and different approach 
to the shrinkage warping problem for singly-reinforced beams 
only. His basic assumption is that the extreme fiber of the beam 
on the side away from the reinforcing steel shrinks the same 
amount as the plain concrete (Fergusonl6 disagrees with this). 
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Following this assumption; the bea.Ill curvature is given by 

<f>sn = = 
6
sh(1-~) 

d E:sh 

(18) 

where €s ms tn.e steel strain and dis the usual effective depth 
measured from the center of gravity of the steei to the opposite 
extreme fiber. Miller suggests empirical values of -Ps/cih = 0.1 
for heavily reinforced members and 0.3 for moderately reinforced 
members. This type of simplified empirical approach seems to havP 
merit, and is discussed further in Section 5.1. 

Time-dependent deflections of reinforced conc~ete flexural 
members, resulting solely from effects o_f sustained load (creep 
deflections'), are usually greater than, and often two to three · 
times as great as, deflections resulting from all other effects 
combined during the life of a structure subjected predominantly 
to sustained loads. Thus, creep deflections are of primary 
interest and should always be considered in addition. to those 
resulting from instantaneous loads and shrinkage. 

In addition to the difficulty of computing the creep-time 
history of a particular concrete under constant, uniformly­
distributed sustained stress, a reinforced concrete flexural 
member is subject :to _.a nonuniform stress distribution and very 
often a variable-load history. An accurate analysis of the 
effects of a variable stress history even for uniformly loaded 
specimens, requires creep-time curves and a ·knowledge of the 
loading history. The rate-of-creep method19 or the super­
position method20 can then be used when detailed creep and 
loading information are available. 

The rate-of-creep method, illustrated in Fig. 1, is straight 
forward. Consider an extreme case in which a concrete specimen 
is subjected to a compressive stress rr for a time interval t1. 
At the end of this interval, the stress is removed completely. 

According to the rate-of-creep method, the creep strain at 
time t 1 is O-d't1 , the product of the sustained stress and the 
unit creep strain for the time considered. Once the stress is 
removed, there is no further change in creep strain and at a 
time, say 2t1 , the creep strain is still rTJt1 , 

The superpositiori method, illustrated in Fig. 2, predicts 
the same creep strain at time t1 of rr dt. However, rather than 
assuming directly that - the compressive stress is removed at time 
t 1 , it is assumed that the specimen is subjected to an additional 
stress of IT in tension and creeps under two opposing fictitious 
stresses. For example, assuming that the creep characteristics 
of the concrete are the same in tension and compression and are 
independent of the concrete age when loaded, the compressive creep 
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strain at time 2t1 is rr rf 2t while the tensile creep strain 
is O-Jt1 ,since the tensile stress is a new stress applied for 
a time interval t 1 . The total compressive creep strain at time 

2t1 is thus cr- ( cf 2t - tf t ) and represents a reduction with 
respect to the creep stain at time t1, since ( J° 2t1 - Ut1) is 
less than Jt1 (primary creep curve increases at a decreasing 
rate with tim~). . 

Usually such a detailed analysis is not feasible, and a 
shorter, more approximate method is used. One such method is 
the sustained-modulus method which refers to concrete under a 
constant sustained stress. In this case a reduced or 
modulus called the sustained modulus of elasticity is 
computing initial-plus-creep deflections. 

crconstant ~constant 
Ect = . € + c = c. ·t· 1 (1 + Ct) initial creep ini ia 

where Ect = sustained concrete modulus of elasticity 

effective 
used for 

(19) 

EC = ordinary concrete modulus of elasticity under 
instantaneous load 

ct = creep coefficient defined as the ratio of creep 
strain to initial strain 

When the sustained modulus of elasticity is used with, say 
the gross section properties in computing deflections, the 
resulting creep deflections are simply equal to the initial 
deflections multiplied by the creep coefficient. It seems 
inappropriate however, to use the term flexural rigidity (EI) 
or beam stiffness in connection with the sustained modulus of 
elasticity, since the effect of creep is to increase deflections 
but not to decrease the bending stiffness of the beam (such as 
for additional short-term loads, etc.). 

Most recommended methods for computing creep deflections 
follow some ramification of this approach. Usually the deflec­
tions computed using the gross-section properties are obtained 
and creep factors (or deflection factors), which include com­
pressive steel effects, specified. Both -shrinkage and creep 
deflections tend to be drastically reduced when compressive 
steel is used. Only the quasi-elastic method (Eq. 17), and not 
the method of Miller (Eq. 18), refer to shrinkage warping for 
doubly-reinforced beams. 

The CRSI21 suggests the following method for computing 
combined shrinkage and creep deflections: Use the gross 
concrete section properties and a shrinkage-plus-creep factor 
of 3; that is, the total deflection is 4 times the initial 
deflection or Ect = Ec/4. For a compression Jteel area equal 

J 

J 
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to_ the tension steel area, use one-half the usual shrinkage­
plus-creep factor or 1.5 for simple beams and one-third the 
usual factor or 1.0 for continuous beams. 

C', 6 Yu and Winter presented an .empirical table of such 
shrinkage-plus-creep factors for different durations of loading 
up to five years. The new ACI Code2 adopted their 5-year or 

[ 

11 ultimate 11 values as follows: 11 The additional long-time deflec-
, tions may be obtained by multiplying the immediate deflections 

I C 
I 

caused by the sustained part of the load by 2.0 when A~= 0; 
1.2 when As= 0.5 As; and 0.8 when As= As. 11 Typical differ­
ences are seen for such recommended factors by comparing the 
CRSI and ACI values of 3 with 2 and 1.5 or 1.0 with· 0.8. The 
reason for such variation is that other factors, such .as con­
crete quality, age when loaded, loading duration, relative 
humidity, etc., significantly influence time-dependent concrete C 
deformations. 

C Total time-dependent (combined shrinkage and creep) deflec­
tions might be computed simultaneously, with the use of some 

[ 
combined shrinkage-plus-creep factor, using any method advocated 
for computing creep deflections alone. The combination of these 
two effects is probably satisfactory for broad-approximate design 
procedures, but leaves much to be desired in analytical work 
where reasonably precise results are desired in unusual as well 
as typical structures. 

[ nonun~~o~d~:i~:yt~1!~~!:c!e!e::,t~!e~t~~;~g~i~~~!~;~i~~e!; 
of the reinforced concrete beam seems to have the effect of 

[ ' 

movinbg thet neudtrbal atxis toward the tension zone. This effect 
can e ob aine y he use of a cracked transformed section 
method where an increased modular ratio (resulting in an 
increased effective steel area), is defined by 

C (20) 

fl ~ where n = Es/Ee, However, in regions where cracking is limited 

I 

I [ · I . 

or nonexistent, this method tends to lead to computed deflections 
that are too large, as does the use of the cracked trarrsformed 
sedtion for short-term loads with the usual modular ration. 

( c 
I 

I ~ 
I 

I 
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6. Serviceability 

Deflections of reinforced concrete flexural members should 
be controlled so as not to affect adversely the appearance and 
serviceability of a structure. This statement is completely 
general but is of primary concern to the design engineer. 
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Should the matter of serviceability be subject to 11 speoification 
or code laws 11 as in tri..., case of safety? Can general limits of 
serviceability be provided for all types of structures? And of 
what value are prescribed minimum depth-span ratios? The 
answers to these questions are not within the scope of this 
report ~ut are mentioned in an effort to present a more complete 
picture of the deflection problem. A detailed review of 
European span-depth limitation~ (which tend to be more liberal 

5 than those of the new ACI Code) is presented in the . CEB Report. 

The question of serviceability is radically different in 
bridge and building structures, primarily because of the problem1 
of damage to plastered ceilings, partitions, window sashes, etc., 
in the case of buildings. Also, cambering is more efficiently 
used in the case of reinforced concrete bridge structures to 
offset excessive deflections. However, in both cases adequate 
deflection-control still depends on the ability of the designer 
to predict instantaneous ana time-dependent deflections with 
reasonable accuracy. 

7. Summary 

It seems worth mentioning that most, if not all, of the 
suggested methods, guides and rules of thumb in this section 
will provide rough estimates of reinforced concrete beam 
deflections in most cases involving "typical designs" and 
"ordinary" conditions. However. the fundamental behavior of a 
reinforced concrete flexural member is so complex that a great 
deal of judgement is needed when any significant aspect of a 
design is somewhat unusual or marginal. Answers to particular 
questions regarding deflections very often depend largely on the 
case at hand. 
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III. DESCRIPTION OF EXPERIMENTAL INVESTIGATION 

3.1 Specimens and Instrumentation 

The experimental phase of this investigation included 
primarily the measurement of instantaneous deflections; time­
dependent deflections; and concrete strains resulting from 
elastic shortening, shrinkage and creep. Two simple-span beams 
and two continuous beams (each continuous over two spans) were 
the principal test specimens. One simple (SB-1) and one 
con.tinuous beam (LB-1) were reinforced with one #3 bar and the 
other simple (SB-3) and continuous beam (LB-3) were reinforced 
with three #3 bars. All spans were 9 feet (continuous beams, 
18 feet long). Duplicate shrinkage specimens containing one #3 
bar, three #3 bars, and also containing no steel were used. 
These were placed on their sides on a smooth surface in order 
to minimize frictional effects. 

The geometry and details of the test beams are shown in 
Fig. 3. No stirrups were required in the beams of this investi­
gation. The shrinkage specimens were the same size as the 
simple beams. The design details of the test beams are shown 
in Table A. l. 

The slump of the concrete was 1.5 in., and the 28-day 
concrete cylinder s6rength and modulus of elasticity were 5130 
p.s.i. and 4.4 x 10 p.s.i., respectively. The concrete mix 
design, per cubic yard of concrete, was as follows: 

Cement (Type I) 
Sand 
Stone 
Water 

423 lb 
1335 lb 
1930 lb 

20 gal 

The tensile yield point of the hard grade billet steel rein­
forcement averaged 52,000 p.s.i. 

A Whittemore mechanical strain gage, shown in Fig. 5, 
(ten-inch gage length providing direct readings to 10 x 10-6 

inches per inch) was used to measure the concrete strains. The 
gage points were stainless steel inserts imbedded in the concrete. 
Each beam had one gage near the top and one near the bottom on 
both sides and at three different locations along the beam, as 
shown in Fig. 3. The strain gage points on the shrinkage 
specimens were placed in the same locations as those of the 
simple beams except on one side only, since these shrinkage 
specimens were placed on their sides. A total of 12 strain 
gages (24 gage points) were used on each simple and continuous 
beam and 6 strain gages (12 gage points) used on each shrinkage 
specimen. Strains resulting from temperature changes were 
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5" 3 - #3 bars 
As=0.33 in2 
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4 II 

Notes: 1. These sections inverted (same section) in negative 
moment regions. 

1" 
12 
7 

2. No web reinforcement was used. 
). All main reinforcement in continuous beams was cut 

off one foot beyond the elastic inflection points 
(quarter-points). No bent-up bars were used. 

(a) One-bar and three-bar cross-sections 

3" Strain-Gage 
4 Inserts Dial-Gage Location 

}· 1" 1011 

3 2 

Ti" 
- 3" 2' - 3" 2' - 3" 2' - II 
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(b) Simple beam 

Dial-Gage Locations 
Strain-G JJ." 

}?n 
T111 

II l:-111 
9' - 0" 9' - 0" 12 

(c) Continuous beam 

Fig. )--Geometry and details of test beams 
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Fig. 4-~View of test beams, shrinkage 
specimens and instrumentation 

Fig. 5--View showing close-up of 
Whittemor~ gage and dial gage 
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eliminated from all shrinkage and creep data by means of a 
control gage having the same thermal coefficient as the concrete. 
The inner bar of the Whittemore gage is made of invar metal. 

Dial gages were used on both sides of each simple beam at 
midspan and at the point of maximum elastic deflection for the 
continuous beams. The accuracy of the dial gages · (0.0001 in.) 
for measuring deflections provided excellent data for this part 
of the study. 

3.2 Experimental Results 

All beams were loaded at age 28 days with the beam dead­
load plus a uniformly distributed superimposed-load. Iron 

_J 

_J 

I 
bricks were used for the additional loading. The bricks were 
placed continuously along the 3-bar beams and spaced uniformly 
along the 1-bar beams (in the latter case the difference between 
the deflections computed for the intermittent-load and the equiv- -
alent continuous-load was of the order of 1% and was ignored in 
the study). A superimposed-load to dead-load ratio of 2,0 was 
used for the 1-bar beams and 5.5 for the 3-bar beams. The total 
loads resulted in computed maximum concrete compressive stresses 
that were the same for the corresponding simple and continuous 
beams (the 1-bar beams--also the 3-bar beams); also resulted in 
computed maximum concrete compressive stresses that were the 
same at all points along the 1-bar and 3-bar simple beams--also 
the same at all points along the 1-bar and 3-bar continuous 
beams. 

A comprehensive schedule of deflection and strain measure­
ments was maintained throughout the test period of 60 days. 
Each deflection and strain value reported is an average of the 
readings on both sides of the beam in the same position. Thus, 

I , 
• I 

J 

7 

any small effects resulting from warping or accidental eccentri- J 
cities of loading were compensated for. Also, only the average 
of the corresponding strain readings on the duplicate shrinkage 
specimens, the quarter-point strain gages for the simple beams 
and the strain gages located at the points of maximum elastic 
deflection for the continuous beams were reported. This pro-
vided a statistical approach for determining experimental values. 
The variations were random and not significant. The basic 
strain, curvature and deflection data are shown in Figs. A.l 
through A.10. 

. I 
Additional data obtained include temperature and relative _ _j 

humidity data. The average ambient temperature was 84 degrees 
F. with extremes recorded of 79 and 91 degrees F. The average ' ) 
ambient relative . humidity was 59% with extremes recorded of 32 _J 

and 72%. Pictures of the test specimens and instrumentation are 
shown ·in Figs. 4 and 5. 

I-



r 
L . 

IV. 

23 

EFFECTS OF CRACKING ON INSTANTANEOUS DEFLECTIONS OF SIMPLE 
AND CONTINUOUS REINFORCED CONCRETE BEAMS 

As discussed in Section II, a relatively large number of 
methods, guides and rules of thumb have been recommended from 
time to time for computing instantaneous and time-dependent 

C:
, deflections of reinforced concrete flexural members with varying 
~ degrees of success. Conflicting aspects of the existence of a 

complex problem and the need for quick, practical design methods 
have resulted in an over-emphasis on the latter. It now seems 

Ci eviaent that it is probably not possible to describe an accept­
able method for predicting deflections that is as brief as 
desirable and still includes provisions for all eventualities. 

[ 

n 
Irrespective of the difficulties of not knowing, in advance, 

the material properties and time-dependent characteristics of the 
particular concrete to be used, it is, nevertheless, of utmost 
desirability to prescribe design.methods that incorporate all of 
the pertinent aspects of the problem. The business of getting 
concrete that meets specified conditions is largely one of 

[ , t t quali y control; an area that is subject to improvemen in 
keeping with the demand for such improvement. 

Instantaneous deflections are of primary importance in con­
sidering deformational behavior of ~einforced concrete beams 
under transient live-loads as well as in determining initial 
deflections under sustained loads. Most practical methods for 

[ : c0mputing creep deflections are based on the initial computed 
deflections. 

[ 
Considered in this section are the effects of cracking on 

' deflections of reinforced concrete beams under short-term loads. 
This requires an evaluation of the effective section properties 

[ 
along the beam as influenced by effects of cracking and partici-

~ pa tion of tensile concrete between ·cracks. Since behavior under 
repeated loading (not necessarily in the sense of fatigue loading) 
should generally be considered, the effective sections along the 

~ beam under all increments of loading should be taken as those 
LJ under the maximum load, or neglecting the effect of loading stages. 

That is; the portions of the beam that have cracked under maximum 
r load, can no longer be uncracked under smaller loads, if healing Lj effects are neglected. Overloads would affect this consideration 

but would tend to be offset by the continued increase in concrete 

11 strength with time. A distinction might be made between short­
[ ! term live-load deflections, where reloading occurs, and initial 

· sustained-load deflections such as under dead-load, which may be 

[ 
applied only once. However, this distinction is probably not 

r 
l 
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justified in most cases and is considered of seconda:r:-y impor­
tance in the analyses to be discussed. Also of interest is a 
practical method for integrating the effects of cracking along 
the length of the beam in the case of both simple and continuous 
beams. 

4.1 Development of an Analytical Method for Including the Effects 
of Cracking in the Prediction of Instantaneous Deflections 

In regions of cracking the effective moment of inertia, 
Ieff, under instantaneous load is less than the uncracked trans­
formed moment of inertia, I~cr, but greater than the cracked 
transformed moment of inertia, rgr, due to the participation of 
tensile concrete between cracks. The actual value of Ieff at a 
given section depends primarily on the extent of cracking or the 
magnitude of the bending moment, M, in addition to the section 
details and concrete strength. 

_J 

I 
- _J 

J 

One logical form of an expression for Ierf, at a given sec­
tion, that satisfies the boundary conditions (when M = Mer, 
Ieff = I~cr; and when M7?Mcr, Ieff -- rgr), is given by Eq. (21). -

When M 7 Mer, 

Ieff "I~cr - [rtcr -I~r] [ l ( M;r)m] (21) 
_j 

where mis an unlmown power. A precedent for a power function 7 
relation relative to the distribution of cracking effects was J 
established by Murashev's Eq. (9) in a totally :different form. 
However, a considerably different value for the power is_deter-
mined herein, although initially it was thought that a second 
degree function was reasonable, as in the case of Eq. (9). 

Since the uncracked transformed moment of inertia is usually · I 
only slightly larger than the gross section moment of inertia, i 
the latter is used in the remainder of the discussion. In cases 
involving heavily reinforced members, it might be desirable to 
use the uncracked transformed section value. 

It is 
equal 
value 

Rewriting Eq. (21) and replacing rt with I 

Ieff "[ (M~r t] lg + [ l -( M;:rm] I~rg' (22) 

seen that the sum of the two bracketed terms is always 
to unity, and, hence, Ieff in Eq. (22) always has some 
between Ig and I~r when M ~ Mer· 

J 
l 

_J 
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If an acceptable evaluation can be made of the 
appropriate value form, Eq. (22) should provide an effec­
tive means for determining the severity of cracking at a 
given section under applied moment in a form directly 
applicable to the computation of deflections. A study of 
Eq. (22) reveals the following weighted values for the two 
section properties corresponding to different magnitudes 
of moment greater than Mer: 

Ieff = C1Ig + C2I~~ 
M = 1.2 Mer M = 2.0 Mer M = 4.0 Mer 

C1 c2 C1 c2 c1 c2 

m = 1 0.83 0.17 0.50 0.50 0.25 0.75 
m = 2 0.69 0.31 0.25 0.75 0.06 0.94 
m = 3 0.58 0.42 0.13 0.87 0.02 0.98 
m = 4 0.48 0.52 0.06 0.94 0.00 1.00 
m = 5 0.40 0.60 0.03 0.97 0.00 1.00 

An exhaustive study was made of the current and other 
experimental data involving statically determinate rectangu­
lar and T-beams to determine the appropriate value or values 
form, corresponding to the effective moment of inertia at 
the individual sections. The Newmark22 numerical procedure 
(illustrated in Fig. 6) was used for this purpose. Results 
using m = 4 for both rectangular beams and T-beams are seen 
in Table 2, Col. F to agree with test data in all cases 
within ± 25% and in- 65% of the cases within ± 10%. Twenty­
three test results were used in the comparison. 

In addition, test data for eleven continuous rectangu­
lar beams were compared with the calculated results using 
m = 4. The Newmark procedure, as used in these solutions 
(illustrated in Fig. 7), provides a method for incorporat­
ing the effects of moment redistribution due to cracking 
in statically indeterminate beams. As shown in Table 2, 
Col. F, the computed results agree with the test data in 
all cases within± 17% and in 70% of the cases within t 10%. 

All of the test beams, concrete properties and computa­
tion details referred to are summarized in Tables 3 and 4. 

Thus, for determining the effective moments of inertia 
at individual sections, Eq. (23) is suggested: 
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For Rectangular Beams and T-Beams 

leff = [(~r) 4] lg+ t Icr (23) 

Following the above evaluation, it was deemed 
desirable to attempt to obtain appropriate values for the 
power min an expression that could be used as an average 
effective moment of inertia for the entire length of a 
beam. The general expression provided by Eq. (22) is of 
a form that should accommodate such an evaluation, since 
it includes both extremes of moment-of-inertia values 
along the beam as well as appropriate moment variables. 
Since all of the test data involved uniformly distributed 
loads, other distributions of moment might be expected to 
result in a different evaluation of m. In cases involving 
heavy concentrated loads, for example, the more general 
solution such as that provided in the Newmark numerical 
solution with the use. of Eq. (23), should be employed. 

In effect, the use of Yu and Winter's Eq. (8) along 
with the cracked transformed moment of inertia provides 
an average effective moment of inertia for an entire length 
of beam. However, the empirical constant of 0.1 was based 
on test beams that were all rather severely cracked. The 
results in Table 3, Col. X for beam LB-3 suggest that 
Eq. (8) may not apply generally in cases where beams are 
only moderately cracked; a condition that was included in 
the evaluations herein. 

For determining an average effective moment of inertia 
over the entire length of a simple reinforced concrete 
beam, Eq. (24) was found to be appropriate (see Table 2). 

For Rectangular Beams and T-Beams 

Avg. leff = [ (::J 3

] lg + [ 1 (::x) 3
] l~r (24) 
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Because of the way in which these equations are bounded by 
reasonably well-established limits (Ig and I~r) in addition 
to the experimental verifications herein, the use of Eq.(24) 
should be acceptable for general use with a considerable de­
gree of confidence. The results of the experimental evaluation 
of the powers in Eq. (24) is shown in Table 2, Col. H. These 
solutions using Eq. (24) differed from those using the more m­
volved mumm::.i:mrl solutions and Eq.(23) by a maximum of 3%. 
This comparison is shown in Table 2, Col. I. 

This short-cut approach for obtaining average effective 
moments of inertia for simple beams was found to be applicable 
to beams continuous at one end using the following weighted 
average for the positive and negative moment regions (see Table 
2): 

= 1 [ Pos. Mom.Avg. Ieff J /, ½ [ Neg.Mom.Av_g. Ieff J (25) 

Although, the experimental data did not include beams continu­
ous at both ends, it is believed that an acceptable solution 
for obtaining an average effective moment of inertia for beams 
continuous at both ends is as follows: 

f ½ [ Neg.Mom.Avg. Ieff] 

Left 
End 

(26) 

Right 
End 

In either case (involving Eqs.(25) or (26) the positive 
moment section properties have the dominant influence on deflec­
tions. Results using Eqs.(24) and (25) are shown in Table 2, 
Col. H to agree with test data in all cases within l 15%. 
Eleven test results were used in the comparison. The redundant 
moments were determined on the basis of elastic analysis for 
prismatic members in these solutions. 

4.2 Outline of Computational Procedures 

The following procedures are outlin~d for computing instan­
taneous deflections using the previous equations and Eq.(11); 

Simple Beam (Constant Concrete Dimensions) 

1. Computed the cracking moment, Mer, using Eq.(11). 
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2. If the maximum bending moment under service loads is 
less than Mer, use Elg for the flexural rigidity at all points 
along the beam in computing the beam deflections. 

3. If the maximum moment (including overloads if desired), 
Mmax' is greater than Mer, compute values for Ieff using Eq.(23) 
~ta sufficient number of sections in the cracked regions and 
compute the service-load deflections using the moments of iner­
tia thus determined. The conjugate beam method or, preferably, 
the Newmark nhmerical procedure (illustrated in Fig. 6) are 
well suited for this purpose. 

3(a). Sufficient accuracy can usually be obtained with 
the use of a constant moment of inertia value determined by 
Eq. (24). 

Continuous Beam (Constant Concrete Dimensions, Including 
T-Beams) 

1. Compute the cracking moment, Mer, for both positive 
and negative moment regions (same value for both except for 
T-beams, in which case the flange overhangs should be neglected 
in computing the negative-moment value) using Eq. (11). 

2. If the maximum bending moment (determined from a pris­
matic beam analysis) under service loads is less than Mer in 
both positive and negative moment regions; use E 18 for the 
flexural rigidity at all points along the beam in computing 
the beam deflections. 

3. If the maximum negative moment using prismatic beam 
analysis (including overloads if desired), ~'P.f' is greater 
than Mer, computed values for Ieff using Eq. ~23) at a suffi­
cent number of sections in the negative moment region or regions. 
Do the same thing for the positive moment region. If the maxi­
mum moment is less than Mer in only one of the regions, use lg 
in that region. Compute the service-load deflec~ions using 
the moments of inertia thus determined and the Newmark numerical 
procedure (illustrated in Fig. 7 for a beam continuous at one 
end only) which includes the effect of moment redistribution 
due to cracking. 

3(a). Sufficient accuracy can usually be obtained with 
the use of a constant moment of inertia value determined by 
Eq. (24) and Eqs. (25) or (26). 
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Continuous Beam (With Variable Depths) 

1. Determine values for M, Mer' I, I~r' and Ieff in 
the Newmark solution (also using Eqs. (fl) and (23)) and com­
pute the deflections at the same time. A unique solution can 
be found which incorporates the effects of moment redistribu­
tion resulting from cracking, although a number of trials will 
usually be required. A shorter method in this case can easily 
lead to erroneous results. However, a ve~y rough short-cut 
estimate could be obtained by following the procedure outlined 
for constant-dimensioned beam.s using Eqs. (24) and Eqs. (25) 
or (26). 

In many cases computed deflections using the ordinary 
gross-section method will not be greatly different from de­
flections using the numerical procedure. However, the more 
extensive method is needed to take into account unusual con­
ditions of proportioning, loading, etc. 

The following is a summary of the boundary conditions, 
associated with different cases of statically indeterminate 
beams, required in the numeri9al solution to incorporate the 
effects of moment redistribution resulting from cracking in 
computing deflections of continuous reinforced concrete beams: 

l. Single Span Beam, One End Fixed 1 One End Pinned 

The solution of this problem is illustrated in Fig. 7. 
The procedure applies equally well to uniform and nonuniform 
beams (symmetrical or unsymmetrical), with variations in I 
properly taken into account for nonuniform beams. The trial 
shear distribution is required since no boundary condition is 
known for shear. 

Boundary Conditions: 
V • ? 
M: 0 at pinned end 
8 • 0 at fixed end 
y = 0 at both ends 

2. Single Span Beam, Both Ends Fixed 

A. Symmetrical Beam (uniform or nonuniform) 
Consideration of half of the beam would be con­
venient in the numerical procedure. A trial 
moment distribution is required since no boundary 
condition is known for moment, in general. The 
procedure would be similar to that of Fig. 7 for 
Case 1 above, except that the distribution check 
would be made for slope in1tead of for deflection. 
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Boundary Conditions: 
V 0 at midspan 
M = ? 
e = 0 at end and midspan 
y = 0 at end 

B. Unsymmetrical Beam (uniform or nonunifomY 
Consideration of the entire length of the beam . 
would be required. Both trial shear and moment 
distributions are required. However, the unique 
solution would be found when all four boundary 
conditions (for slope and deflection) are satis­
fied. 

Boundary Conditions: 
V = ? 
M ? 
e = 0 at both ends 
y = 0 at both ends 

3. Continuous Beam of Two Spans 

A. Symmetrical Beam (uniform or nonuniform) 
Same as Case 1 above. 

B. Unsymmetrical Beam (uniform or nonuniform) 
Consider the entire two spans in the numerical 
procedure. Trial shear distributions are required 
in both spans and would be temporarily established 
by the requirement that the moment for each ·beam 
end at the middle support is the same. Trial 
slopes are also required in both spans .and would 
be adjusted until the slope for each beam at the 
middle support is the same. A final overall dis­
tribution requirement must be met for the boundary 
conditions on deflection, after which the unique 
solution would have been found. 

Boundary Conditions: 
V = ? 
M = 0 at both outside ends; and the same for 

each beam end at the middie support. 
8 = same for each beam end at the middle support. 
y Oat all three supports. 

4. Continuous Beam of Three or More Spans 

A similar solution as for Case 3B would be possible for 
any number of spans. 
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V. DISCUSSION OF TEST RESULTS 

The experimental phase of this investigation was undertaken 
in order to evaluate the effects of certain variables heretofore 
not clearly distinguished. Relatively high quality concrete 
beams of moderate span-depth ratios and loaded so that moderate 
cracking occurred provided a useful distinction from most of the 
other deflection tests that have been reported; which were of 
average concrete quality, average-to-large span-depth ratios 
(up to 70 which is abnormally large), and severely cracked (see 
Tables 3 and 4). Also, the test beams herein were carefully 
designed with different steel percentages so that the computed 
maximum concrete compressive stresses were the same for the 
corresponding simple and continuous beams (the 1-bar beams -­
also the 3-bar beams); also that the computed maximum concrete 
compressive stresses were the same at all points along the 
1-bar and 3-bar simple beams -- also the same at all points 
along the 1-bar and 3-bar continuous beams. Compression steel 
was not included as a variable in the current experimental 
program. 

5.1 Shrinkage Warping 

Primary interest with regard to analytical methods for com­
puting shrinkage warping centers around the basic assumptions and , 
hence the pertinent variables involved. For example, the quasi 
elastic "tensile force" method given by Eq. (16) includes a 
flexural rigidity expression not found in Miller 1 s method given 
by Eq. (18). 

T e where Ts . A € E (16) 
cpsh 

s = ( As + ~) sh s 
Ect Ict 

cf>sh 
= €sh (1 - Es/ c sh) (18) 

d 

The latter equation results in a warping expression as a function 
of the free shrinkage, effective depth and a constant (paren­
thesis) which was specified in a general way to be 0.9 for heavily , 
reinforced members and 0.7 for moderately reinforced members. 
The method is applicable to singly-reinforced beams only, whereas 
Eq. (16) is applicable to both singly- and doubly-reinforc·ed beamE 
Basic to Miller's approach is the assumption that a concrete member 
restrained at some point outside the kern limit on one side, will _ 
not shrink more (but rather will undergo an equal shrinkage) than , 
the free shrinkage on the opposite extreme fiber, as the tensile 
force method of Eq. (16) predicts. 

I -
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The curves of the current investigation ahown in Fig. 8 
indic~te tha t the extreme fiber does ehrink tDOra than the free 
shrinkage of the companion apecimen, but not 11Uch more. Hence 
the effects of the eccentric ateel reei atance, outside the kern 
limit of the section, do seem to produce "greater than free" 
shrinkage of the oppoaita extreme fiber. But Miller' s approach 

r;· would certainly appear to be a close approximation. Of course, 
l_ j in bdeepfer bheaios (greaterbecceintrhicity) the ahaau111iption wodudld thend 

to e urt er in. error, ut n t eae cases t e ncrease ept 

r L __ I 

greatly reduces the shrinkage-warping curvature• anyway. 

The current and other shrinkage data have been tabulated 
in Tables 5 and 6 and the results compared with the following 
procedures for computing shrinkage warping: 

Eq. (16) is modified to use the simpler expressions 

[
:, (Ec/2)(Ig) in place of Ect let and eg which refers to the 

_ gross section. This Eq. (27) is applicable to both singly­
and doubly-reinforced beams. Closer agreement with test 
results was found as a result of this convenient modification. 

[ 

r 
j 
l ' 

. r , I 
L.., 

r 
I : 
L -

r 
( ; 

cp sh : 
Ts eg 
Ee Ig (27) 

2 

Miller's Eq. (18) is applicable only to singly-reinforced 
beams. 

The following new empirical expressions, which provide the 
closest agreement with test results, are introduced. Eqs. (28) 
and (29) are applicable to both singly- and doubly-reinforced 

beams. / f u-o', / <. t/) • h _ (O. 7) Eo"b (p-p') 
1 3 I~ 1 2

, for (p-p') = 3.0~ (28) 

and 

</J sh : .£..!h , for (p.;p') > 3. 07. (29) 
D 

For singly-reinforced beams, p' = 0, and Eq. (28) reduces to 

cf:, sh = (0. 7) (30) 

With regard to comparisons with 
lowing agreements were found and are r in Table 6: 

16 test results, the fol­
shown in Cols. K, N, and P 

! 
I---. 

l_' Using Eq. (27) Results agreed with test data in 25'1. of the 
cases within 107.. 
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' Using Eq. (18) Results agreed with test data in 23'1 of the 
cases within 10'1. 

' -I 

Using Eqs. (28),(29),(30) Results agreed with teat data in 69'1 
of the cases within 10'1. 

Keeping in mind the nature of the problem, the latter agreement 
is thought to be reasonably good. 

Eq. (28) is an adaption of Miller's approach. For example, 
his method results in the following expressions for singly­
reinforced beams only: 

<P = 0.7 Esh for moderately reinforced beams. 
sh d 

(/) sh 
• 0.9 €sh for heavily reinforced beams. 

d 

Eq. (30) for singly-reinforced beams results in the following: 

¢> sh : 0.56 
= • 70 
• .80 
= .88 
= .96 
• 1.01 

Csh/D 
II 

II 

II 

II 

II 

when (p - p ') = 0.5 
1.0 
1.5 
2.0 
2.5 
3.0 

The use of the 110re convenient overall depth D instead 
of the effective depth d was found to provide closer agreement 
with the data. The difference is negligible for all but shallow 
beams and for these, the use ·of D seemed to provide the best 
fit. It is, of course, assumed that abnormal covers (abnormal 
differences in D and d) are excluded from consideration. 

Eqs. (28) and (29) refer to both singly- and doubly­
reinforced beams. The expression in the last parenthesis 
of Eq. (28), 

( • ; p') 1/2 (31) 

..) 

_J 

i 

\ 

was found to be required in order to produce a somewhat smaller 
curvature for doubly-reinforced members than for singly-reinforced _ __; 
members when (p - p 1

) for the doubly-reinforced members is equal 
top for the singly-reinforced members; other conditions being 
the same. It is seen that the modifier of Eq. (31) becomes unity 
when p' • O. Eqs. (28),(29), and (30) provide very simple ex­
pressions for computing shrinkage warping in terms of only two 
section properties (D and p or (p - p')) and the free shrinkage 
E sh• However, the data in Tables 5 and 6 tend to indicate 

-

that the methods discussed should be used with caution when 
dealing with high-strength concrete. ! --

\ 
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It ■hould be mentioned that consideration has not been given 
to effects of cracking on shrink.age warping in either the experi­
mental studies of the current investigation and other• reported 
in the literature or in the analytical methods discussed. At 
lea■t according to the tensile force method, cracking would tend 
to increase the eccentricity of the te~sile steel in singly-rein­
forced beame and would therefore seem to increase shrinkage warp­
ing. However, according to the other approach discussed, effects 
of cracking shQuld play a minor role in producing shrinkage warp­

' 

I [ 

I 

[ 
r ing since the extreme fiber is still assumed to shrink an amount 
I I equal to the free shrinkage, and the resistance factor provided by 
L! the e■pirical constant (0.7) and the steel percentage term or terms 

would not seem to be much different in the case of warping of crack­
[ ed ■ec tions. 

With regard to shrinkage deflections of continuous beams, if 

l
~ the e ffect of moment redistribution resulting from shrinkage cur-
- vaturea are neglected, the effects of shrinkage on deflections can 

be determined using any moment-area technique or numerical proced­
r-, ure and the curvature expreasions discussed herein (by substituting L the curvature </> for M/EI). Eqs. ( 18), (27), (28), (29), and (30) all 

define shrinkage curvatures at individual sections, although these 
expre■■ions are usually cons tant for a considerable length of a 
r e inforced concrete beam. 

5.2 Deformational Behavior of Test Beams 

l : In addition to the shrinkage strain and curvature data for the 
shrink.age specimens shown in Figs. A.2 and A.3, the total (instan­
taneous plus time-dependent) and instantaneous plus creep strain 

~ data are ■hown in Figs. A.4 through A.7. Since the curves have 
LJ markedly "leveled off", and with the additional information shown 

in Fig. 9 for projecting 2-month values to 20-year or "ultimate" 
r;_ va lues , ~ertain quantitative as well as qualitative conclusions 
LJ, can be drawn with regard to ultimate deformational behavior. 

~ In Figs·. A.6 and A. 7, the tension-gage strains are seen to 
l I decrease with time in cases where shrinkage strains exceed the 

creep strains . The basic curvature and deflection data for the 
teat beams are ahown in Figs. A.8, A.9, and A.10, and further 

[
: r epresented in Fig. 11 and Table 7. The testing period reported 

_ for the beams of thi s investigation was 2 months. 

r f Average values for the creep)coefficients (defined as ratio 
r__· o creep strain to initial atrain shown in Fig. 10 were virtually 

the s ame for the ten.eion and compression gages, al though the great­
r er variation was observed for the tension gages. This was probably 

I~ due to the random cracking at some of the gage locations 

--........ .. _.,, 

(L 
I 
I 

i 



50 

on the tension side bf the beams. The average values for the 
time--dependent (shrinkage plus creep) deflection coefficients 
(defined as ratio of time-dependent deflection to initial 
deflection) are shown in Fig. 11. 

I 

·I 

At 2 months the average tensile and compressive creep coef­
ficient was about 0.9 while the average time-dependent deflection 
coefficient was about 1. .5. Projecting these values to 20-year 
values using Fig. 9 (multiplying by 2) results in corresponding 
coefficients of 1.8 and 3.0 respectively. Results in Table 7 
indicate that shrinkage curvatures varied from 11% to 19% of the 
total time-dependent curvature, so that the corresponding average ! 
creep deflection coefficient (defined as ratio of creep deflection _, 
to initial deflection) would be about 2.6. By comparing the 
ultimate creep strain coefficient of 1.8 with the ultimate creep 
deflection coefficient of 2. 6, i:t is suggested that other effects · -· 
seem to have a definite influence on so called creep deflections 
ot~er_tha

1
n dir

1
ectt~oncr~tethcretepfstrahi~fst .. Undoeubtte

1
dlya ~neaofd the ! 

pr1nc1pa exp ana ions 1s a o as 1 1ng nu ra xis n 
time-dependent adjustments in the stress as well as strain dis­
tributions along the beam. This is also discussed with regard 
to the experimental curvatures obtained. 

I 

For relatively high strength concrete, loads applied at age 
28-days (considered an average loading age -- not particularly 
early or late), and .59% average relative humidity, the value for 
the ultimate creep coefficient given in Table 1 is about 2 . .5. 

Thus suggested in the previous paragraphs is the nature of 
the theoretical as well as empirical vagueness of the approaches 
available for applying creep or shrinkage plus creep coefficients 
to instantaneous deflections when computing creep or shrinkage 
plus creep deflections. 

The effects of cracking on instantaneous deflections were 
studied in Section IV and are further evident with regard to 
time-dependent deflJctions in Fig. A.10. For example, the 
maximum moment for the simple beam SB-3 was about twice the 
moment corresponding to first cracking, while the simple beam 
SB-1 was uncracked. However, the time-dependent deflection 
coefficients at 2 months were 0.146/0.l.53 = 0.9.5 for SB-3 and 
0.043.5/0.0410 = 1.06 for SB-1, indicating that extent of 
cracking does not seem to materially affect, one's choice of 
time-dependent deflection coefficients. 

Tabulated in Table 7 are the instantaneous curvatures, 
and curvatures at the end of the testing period for all of the 
gage locations. These .curvatures were obtained by dividing the 
algebraic difference in the top and bottom gage readings by the 
distance between them at each gage location. 

• I 
J 

·-
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From Table 7, Cols. D and E, it can be seen that even though 
the design stresses for the 1-bar beams were the same, the ratio 
of experimental instantaneous curvatures to moment for the 3-bar 
beams were of the order of twice that of the 1-bar beams, which 
were subjected to the correspondingly smaller loads. This demon­
strates ·the tendency for relatively large steel-percentage beams 
to undergo considerably greater curvatures and deflections when 
designed for the same allowable stresses by elastic theory. 
Similar behavi~r is seen for the instantaneous plus creep curva­
tures in Table 7, Cols.Land M but to a slightly lesser degree. 

Interesting results are shown in Table 7, Cols.Hand I where 
in every case the ratios of time-dependent to initial curvatures 
are larger in the smaller moment regi9ns. The same is true for 
the creep ratios (with one exception in eight cases -- and it 
thought to be insignificant) of Table 7, Cols. N and O. This 
would suggest that in regions of higher moment (within working 
stress ranges -- that is, below any high overload range) larger 
early creep strains tend to cause greater reductions in concrete 
stresses with accompanying greater reductions in creep curva­
tures with time. Involved is the phenomenon of the shifting 
neutral axis with time as a result of the shrinkage and creep 
behavior of a nonhomogeneous (particularly so when cracked), 
composite steel-concrete structural member. 

The brief discussion of this section serves only to demon­
strate a number of fundamental phenomena -regarding instantaneous 
and time-dependent characteristics of reinforced concrete beams 
as observed in a limited number of test results. Methods for 
computing deflections that take into account most of these 
effects have been discussed in thi-s report and in the case of 
cracking effects and shrinkage warptng, new procedures set forth. 
It appears that the gap between fundamental answers related to 
deformational behavior of such beams and empirical approaches 
for controlling structural deflections remains a formidable but 
not impossible one to materially close in the not too distant 
future. 
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200 
A 

4000~----~----~-----'fl!Jf 

Concrete Age in Days (initial 
readings taken at age 4 days) 

0 A--Shrk. Spec. With No Steel (p=O), All Gages Used 
0 B--Shrk. Spec. With One Bar (p=0.69%), All Gages Used 
~ c--Shrk. Spec. With Three Bars (p•2.07%), All Gages Used 

Fig. 8--Comparison of shrinkage strains at the top fiber 
for the specimens with different steel percentages 
(strains proportioned to extreme fiber using a 
linear distribution with the top and bottom gages) 
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Based. on "Long-Time Creep and Shrinkage Tests of 
Plain and Reinforced Concrete," by Troxell, 
Raphael and Davis 1 Proceedings AsrM, V. SB, 1958 

Fig. 9--Average rate of increase for 
shrinkage and creep strains 
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2.0 

1.0 

0 
0 20 

2.0 

1.0 

0 
0 

Time in Days (time zero taken at 
age 28 days--age beams were loaded) 

Time in Days· (time zero taken at 
age 28 days--age beams were loaded) 

Creep Coefficients Defined as Ratio of 
Creep Strain to Initial Strain 

Fig. 10--Compression and tension gage creep coefficient 
versus time curves for four test beams 
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Time in Days (time zero taken at 
age 28 days--age beams were loaded) 
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Time-Dependent Deflection Coefficient Defined as Ratio 
of Time-Dependent Deflection to Initial Deflection 

Fig. 11--Time-dependent deflection coefficient 
versus time curves for four test beams 
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VI. CONCLUDING REMARKS 

An attempt has been made to study the complex deforma­
tional behavior of reinforced concrete flexural members as 
influenced by the interrelated effects of cracking, shrink­
age warping, creep, tensile and compressive steel percent­
age, continuity, moment redistribution in statically 
indeterminate beams, etc. Initially, a detailed review 
and discussion of existing methods, guides and rules of 
thumb for predicting deflections was presented for the 
purpose of examining the nature of the deflection problem. 

A new and practical method was presented for computing 
shrinkage warping which agrees more closely with test data 
than previous methods advanced. See Eqs. (28), (29), or 
(30) for the appropriate curvature expressions to be inter­
grated acros~ the span. For example, the mid span deflec­
tion A= q>L /8 for a simple span. However, only shrinkage 
warping of uncracked specimens has been investigated experi­
mentally to the writer's knowledge, and effects of cracking 
on shrinkage curvature in unsymmetrical sections represents 
an area requiring further study. A number of interesting 
observations related to effects of steel percentage, crack­
ing and the phenomenon of the shifting neutral axis with 
time on deflections were made from the experimental 
curvatures and deflections. 

Consideration was given to the effects of cracking on 
deflection~ and recommended design procedures presented for 
predicting these effects. A method was demonstrated for 
including the effect of moment redistribution due to crack­
ing in computing deflections of statically indeterminate 
beams. Deflections computed by these procedures compared 
reasonably well with the experimental data obtained in this 
investigation and other data on deflections of simple and 
continuous reinforced concrete beams. See Eqs. (23) through 
(26). Comparisons are tabulated to show the nature of the 
agreement that can be expected between analytical and 
experimental deflections. 

It appears that future studies should concentrate on 
the effects of random cracking on deflections since both 
instantaneous-load cracks and progressive cracking under 
sustained loads in many cases play a dominant role in 
determining deflection behavior. In the case of statically 
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indeterminate beams, moment redistribution effects 
resulting from shrinkage, creep and cracking also 
drastically influence deflections in many cases and 
represent an area that has not been extensively explored. 

The problem of deflection prediction and control of 
reinforced concrete flexural members involves a number of 
complex and interrelated influences herein discussed. In 
addition to the largely empirical approaches that constitute 
the main tools for present-day prediction of d~flections, 
more attention should undoubtedly be given in the future to 
the statistical aspects of the problem as related to 
statistically optimum designs, confidence intervals for 
computed deflections, etc. 
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Table A.1--Continued 

corresponding simple and continuous beams (the 1-bar beams--also the 3-bar 
beams); also that the computed maximum concrete compressive stresses are the 
same at all points along the 1-bar and 3-bar simple beams--also the same at 
all points along the 1-bar and 3-bar continuous beams. 

8 In the case of the continuous beams, all moments are computed by elastic 
theory for prismatic members. 

bWhere 3 numbers appear, they refer to DL +SL= Total Load effects, re­
spectively. One number refers to total load effects. 

cMaximum stresses fc and fs were computed using the cracked transformed 
section properties and a modular ratio of 6, according to the AASHO 
Specifications. 

dcomputed using v = V/bd and u = V/ 2
0
jd. 

8Maximum concrete tensile stresses ft were computed using the uncracked 
transformed section properties. 
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Fig. A.1--Average 28-day concrete stress-strain 
curve (6n x 1211 cylinder tests) 
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0 
Shrinkage Specimen With No Steel 

200 

0 
Shrinkage Specimen With One Bar, B-l,(p=0.69%) 

200 

3001------...i.-----...J...------' 

0 
With Three Bars B-3 (p=2.07%) 

200 

300'-------.,__ _____ .,__ ____ __, 

0 30 60 90 
Concrete Age in Days (initial 
readings taken at age 4 days) 

0 A--Top Gages at Quarter-Point of Span 
8 B--Bottom Gages at Quarter-Point of Span 
A c--Top Gages at Midspan 
0 D--Bottom Gages at Midspan 

Fig. A.2--Concrete shrinkage versus time curves for 
specimens containing different steel percentages 
(duplicate shrinkage specimens were used) 

' I -
I 

-' 

I 
I 
i __ J 

I --

__ .J 

! 
_j 



' I 
j r 

'1 
L, 

I ~-
i- L 
I 

C ' 

C 
I ~ I 
J 
I 

i D 
I 
j [ 

I 

I 

l n 

l : I 

! 

I -J~ 
-I 
j 

C 
[ 

I r l 
j _J 

[ 

J 
[ 

I 
i fl I LJ 
I 

i 

I C I 
1 

------. -·- L 

r 
l 

71 

01..@F-------------"-------' 
0 30 60 

Concrete Age in Days (initial 
readings taken at age 4 days) 

90 

0 A--Shrinkage Specimen With Three Bars, B-3, (p=2.07%) 
El B--Shrinkage Specimen With One Bar, B-1, (p=0.67%) 

Fig. A.3--Average shrinkage curvature along 
members versus time curves 
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600 
Midspan Gages (Simple Beams) 

400 
Quarter-Point Gages (Simple Beams) 

20 

Time in Days (time zero taken at 
age 28 days--age beams were loaded) 

60 

--Bottom Gage (Tension) Fbr Three-Bar Simple Beam, 
SB-3, (p = 2.07%, wS1/w01 =5.5) 

--Top Gage (Compression) For Three-Bar Simple Beam, 
SB-3, (p = 2.07%, wS1/w01 =5.5) 

--Bottom Gage (Tension) For One-Bar Simple Beam, 
SB-1, (p = 0.67%, w8rfw01 =2.0) 

--Top Gage (Compression) For One-Bar Simple Beam, 
SB-1, (p = 0.61%, ws1/wDL =2.0) 

Fig. A.4--Total (instantaneous plus time-dependent) concrete 
strain versus time curves for two simple beams 
with different steel percentages and loading, 
but the same computed elastic concrete stresses 
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Middle Support Gages (Continuous Beams) 
--Negative Moment Region 

600..------~----------.. 

Point of Max. Elastic Defl. Gages (Cont.Beams) 
--Positive Moment Region 

300-------------.....-------

2001--------ff'l,---:=ja»--==-----,f--------1 

100 

0 

-100--------------------.... 
0 20 40 

Time in Days ( time zero taken at 
age 28 days--age beams were loaded) 

0 --Bottom Gage (Tension-Po·s.Mom., Compression-Neg.Mom.) 
For Three,:,.Bar Conti'nuous Beam,LB-3,(p=2.07%,wSL/wD1=5.5) 

El 

8. 

~ 

Fig. 

--Top Gage ( Comoressi.on-Pos.r--1om., Tension-Neg .Mom.) For 
Three-Bar Continuous Beapi,LB-3,(ps2.07%,w51/wn1=5.5) 

--Bottom Gage (Tension-Pos.Mom., Compression-Neg.Mom.) 
For One-Bar Continuous Beam,LB-l,(p=0.67%,w51/wn1•2.0) 

--Top Gage (Cornpression-Pos.Morn., Tension-Neg.Mom.) For 
One-Bar Continuous Beam,LB-l,LB-l,(p=0.67%,w5tfwn1°2.o) 

A.5--Total (instantaneous plus time-dependent) concrete 
strain versus time curves for two continuous beams 
with different steel percentages and loading, but 
the same computed elastic concrete stresses 
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400 
Midspan Gages (Simple Beams) 

0-------------------___. 

0 20 40 

Time in Days (time zero taken at 
age 28 days--age beams were loaded) 

60 

0 --Bottom Gage (Tension) For Three-Bar Simple Beam, 
SB-3, (p = 2.07%, Ws1/Wn1 = 5.5) 

0 --Top Gage (Compression) For Three-Bar Simple Beam, 
SB-3, (p = 2.07%, wS1/wDL = 5.5) 

8 --Bottom Gage (Tension) For One-Bar Simple Beam, 
SB-1, (p = 0.67%, wstfwn1 s 2.0) 

l::l --Top Gage (Compression) Fbr One-Bar Simple Beam, 
SB-1, (p = o.67%, WSL/wDL = 2.0) 

Fig. A.6--Instantaneous plus creep strain versus time curves for 
two simple beams with different steel percentages and 
loading,but the same computed elastic concrete stresses 
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Middle Support Gages (Continuous Beams) 
--Negative Moment Region 

600-------------------

I 
'0'-0 
rd I 
t) 0 
q r-l 

H l>< 
Q) 

'O C 
C •r-1 :::i, 

C 
(/) •r-1 
C 

·r-1 ., 
rd 'O 
H C1l 
+) 0 
Cl) ...:i 

P,'O 0 
Q) Q) 
Q) (/) 
H O 
0 Cl, 

(/) -~ 
::l H 
8 ~ Point of Max. Elastic Defl. Gages (Cont.Beams) 
~ c75 

400
--Positive Moment Region 

QC/) -~~~-~~-et--Cl) ::l 
C r-l 
(1j p... 
+) 

@~ 
+> 0 
Cl) ...:i 
C 

H 

0 20 40 

Time in Days (time zero taken at 
age 28 days--age beams were loaded) 

0 --Bottom Gage (Tension-Pos.Mom., Compression-Neg.Mom.) 

60 

For Three-Bar Continuous Beam,LB-3,(p=2.07%,w
81

/wD
1

=5.5) 

0 --Top Gage (Compression-Pos.Mom., Tension-Neg.Mom.) For 
Three-Bar Continuous Beam, LB-3,(p=2.07%,w81/wD1=5.5) 

& --Bottom Gage (Tension-Pos.Mom., Compression-Neg.Mom.) 
For One-Bar Continuous Beam,LB-l,(p=0.67,w81/wD1=2.0) 

0 --Top Gage (Compression-Pos.Mom., Tension-Neg.Mom.) For 
One Bar-Continuous Beam,LB-l,(p=0.67%,w81/wD1=2.0) 

Fig. A.7--Instantaneous plus creep strain versus time curves for 
two continuous beams with different steel percentages and 
loading, but the same computed elastic concrete stresses 
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Simple Beams 
300,--------------------

0 

Midspan, SB-3--~ 
Midspan, SB-1 

Quarter-Point, 
Quarter-Point, 

Point of Max. Elastic Defl., 
Point of Max. Elastic Defl., 

Continuous Beams 
300----------------.... .._ 

Middle Support, LB-3------­
Middle Support, LB-1 

2oor--_:__:_:__-=.-=.i==::g:::===t=ae=--+-9~:::0::::H9 

100 

0 
0 20 40 

Time in Days ( time zero taken at 
age 28 days--age beams were loaded) 

60 

Fig. A.8--Total (instantaneous plus time-dependent) 
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Simple Beams 
300 -------------------. 

0 
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I. IN'ffiODUCTION 

Part II of this study consists of a rerun of tests 
in Part I and an analysis of the resulting data. 

Toe tests of Part I were rerun because some of the 
beams were honeycombed and one of the beams (L-Bl) was 
cracked while being moved into position for loading. 

Concrete for the beams of Part II was vibrated 
during pouring in order to minimize the honeycomb. 

It was judged desirable to determine the effect, if 
any, of the condition of the beams of Part I upon the 
results of the study. 

II• DESCRIPTION OF EXPERIMENTAL INVESTIGATION 

A total of four beams was tested, two simple beams 
and two continuous beams (each with two equal spans 
contirmous over a center support). One simple beam 
(SB - 1) and one continuous beam (LB - 1) were reinforced 
with one #3 bar. The other simple beam (SB - 3) and 
contirmous beam (LB - 3) were reinforced with three #3 bars. 
ill spans were 91 long, the continuous beams having an 
overall length of 18 1 • In addition to the four test 
beams, six shrinkage specimens were tested. The shrinkage 
specimens were the same size as the simple beams. Two 
were reinforced with three #3 bars, two with one #3 bar, 
and two were without reinforcement. The shrinkage specimens 
were placed on one side on a smooth, oiled,~plywood surface 
in an attempt to eliminate a:ny frictional effects which might 
influence the shrinkage measurements. Details of the test 
beams are shown in Fig. 3 of Part·r of this study. 

The properties of the materials were as follows: 

Concrete slump •••••••••• 
28 day concrete cylinder strength. 
Concrete modulus of elasticity. 
Tensile yield point of the steel. 

2.1.n 
• 2 

.l.i4.50 psi 

.3._5 X 106 psi 

.l.i9,000 psi 



2. 

The concrete strains were measured by using a Whittemore 
mechanical strain gage with a 1011 gage length. Gage points 
were imbedded near the top and bottom of each beam at six 
different locations giving a total of 12 gages and 24 gage 
points for each beam. Six gages and 12 gage points were used 
on each shrinkage specimen. Temperature effects on strains 
were eliminated through the use of a temperature bar made of 
invar metal having the same coefficient of thermal expansion 
as the concrete. 

III. TESTING PROCEDURES 

All beams were loaded at age 28 days with iron bricks. 
The bricks were spaced continuously in the 3 - bar beams and 
uniformly in the 1 - bar beams. The loading was the same as 
in Part I of this study and can be seen in Fig. 4 of Part I. 

The deflection and strain readings reported were the 
average of those on each side of the beam in the same 
position in order to eliminate any torsional effects. Also, 
only the average of corresponding strain readings on the 
shrinkage specimens and test beams were reported. 

IV. COMPARISON OF TEST RESULTS 

Figures in Part II correspond to figures in Part I as 
follows: 

Part II Part I 

Fig. 1 corresponds to Fig. 8 
Fig. 2 II II Fig. 10 
Fig. 3 II II Fig. 11 
Fig. 4 II II Fig. A-1 
Fig. 5 II II Fig. A-2 
Fig. 6 II II Fig. A-3 
Fig. 7 II II Fig. A-4 
Fig. 8 II II Fig. A-5 
Fig. 9 ti II Fig. A-6 
Fig. 10 II II Fig. A-7 
Fig. 11 II II Fig. A-8 
Fig. 12 II II Fig. A-9 
Fig. 13 II II Fig. A-10 

A comparison of Fig. 4 of Part II with Fig. A-1 of 
Part I shows that both fc and E were somewhat higher in 

_ } 

I -
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tests conducted in Part I as opposed to those of Part II. 
The modulus of elasticity was 26% higher in Part I as 
compared to the modulus of elasticity of the concrete in 
Part II. 

Figures 1 and 5 of Part II and Figures 8 and A-2 of 
Part I show that the shrinkage was about 20% greater in 
Part I than in Part II. This was to be expected because 
a rich concrete will tend to shrink more than a lean one. 
In general, all other curves for strains and deflections 
ran higher in Part II than in Part I by amounts ranging 
from 15% to about 40%. Since the modulus of elasticity 
of the concrete in Part I was 26% higher than in Part II, 
these larger strains and deflections appear quite reasonable. 
The only exceptions to this occur in the tension gage 
creep coefficients of Fig. 2 and the concrete strains 
in the positive moment region of Fig. 8. These were about 
the same to slightly lower in Part II as compared to Part 
I. In the writer's opinion, this was probably caused by 
tension cracking of the concrete and a redistribution of 
moments in the continuous beams. 

V. CONCLUSIONS 

The test results in Part II agree quite well with 
those of Part I. Strains and deflections are somewhat higher 
in the second set of tests than in the first, but this is 
caused by the lower modulus of elasticity of the concrete 
in Part II. Because of the close agreement of the test 
results, it is the writer's opinion that neither the 
honeycomb of the test beams in Part I or the hairline 
crack of beam L - Bl had any effect on the data. 



~ 
I 

<IJO 
~r-i 
as .... X -~ 

•r-t i::: 
... •r-t 

..c:-.......... 
if.l i::: 

•r-t 
(IJ 

~ ... 
(IJ [/J ... ~ 
C) •r-t 
~ as 
0 ... 

c.) ~ 
rn 

0 

100 

200 

300 

400 
0 

4 

30 60 

Concrete Age in Days (initial 
readings taken at age 4 days) 

90 

A--Shrk. Spec. With No Steel (p=O), All Gages Used l 
B--Shrk. Spec. With One Bar ( p=O. 69%), All Gages Used _J 

C--Shrk. Spec. With Three Bars (p=2.071,), All Gages Used 

Fig. l--Co!!1parison of shrin!{age strains at the top fiber 
for the specimens with different steel percentages 
(strains proportioned to extreme fiber using a 
linear distribution with the top and bottom gages) : _, 

I 

7 
I 

! -

I -



[ 

[ 

[ 

Q 

C 
I C 

[l 

[i 
r 

i L 
~c I I 

i 

5 

3.0 ,-----------------------

0 

2.0 

1.0 

0 

0 

upper limit 

a 

lower limit 

20 40 

Time in Days (~ime zero taken at 
age 28 days--age beams were loaded) 

60 

limit 

Time in Days (time zero taken at 
age 28 days--age beams were loaded) 

Creep Coefficients Defined as Ratio of 
Creep Strain to Initial Strain 

Fig. 2--Compression and tension gage creep coefficient 
versus time curves for four test beams 

.1 



6 

3.0,------------------------
limit 

+l 
i:: 
C1J 2.0r---------t-----~<C.......:=J--------1 •r-t 
CJ 

•r-t 
C,-t 

+l C,-t 
i:: CIJ 
CIJ 0 

"Cc.:> 
i:: 
CIJ i:: 
r.i.o 
~:;; 1.0 l---:::,f----;;,-..::::..:,--------l-------~ 

I CJ 
CIJ CIJ 
8 r-1 

•r-t C,-t 
8 CIJ 

A 

0 
0 

limit 

20 40 

'l'irne in Days ( time zero taken ai, 
age 28 days--age beams were loaded) 

GO 

Time-Dependent Deflection Coefficient Defined as Ratio 
of Time-Dependent Deflection to Initial Deflection 

. , 1. 

Fig. 3--Time-dependent deflection coefficient 
versus time curves for four test beams 



n L, 

r 

I 
~ L 

i r 
L'. 

I 
[ 

t' 

I [ 

[ 

r 
LJ 

,--

1 ; 
L 

r 
L 

[ 

[ 

n 

•r-l 
Cl} 
p., 

"' Cl} 
Cl} 
Q) 

H 
+' rn 

Q) 

+' 
Q) 

:;.. 
-.) 

::: 
0 

c..) 

Fig. 

4000 

3000 

2000 

]000 

0 

7 

C t St . . /· 10-4 oncre e. rain, in 1n x 

f' = 4450 psi 
C 

E = 3.5 x 106 psi 

4--Averagc 28-day concrete stress-strain 
curve (0 11 x 12 11 cylinder tests) 

12 



Fig. 

8 

Shrinkage Specimen With No Steel 

0 
Shrinkage St-:ecimen With One Bar, B-1,(p=0.69fo) 

0 
300,__ _____ .....i... ______ 1.-____ ___. 

0 Shrinkage Specimen With Three Bars, B-3, ( p=2. 07~~) 

300....._ _____ ....L.,. ______ 1.-____ _, 

0 30 60 

Concrete Age in Days (initial 
readings taken at age 4 days) 

A--Top Gages at Quarter-Point of Span 
B--Bottom Gages at Quarter-Point of Spaµ 
C--Top Gages at Midspan 
D--Bottom Gages at Midspan 

90 

5--Concrete shrinkage versus time curves for specimens 
containing different steel percentages (duplicate 
shrinkage specimens were used) 

_J 

I 

! 

! 
. j 

I 
._I 

I 
-..1 

I -
.__..J 



r 
,-..__, 

' 
I 
I 

l 
\ 

I 
I 

I 

I 

~ 

I 

L -

[ 

D 
C 
r, 
lJ 

n 
L. -

[ 
r 
I ' 
I i _., 
, 

r-
I : 
L~ 

r -J 

Q 
r 
' . L 

[ 
r 
I 
l J 

9 

Concrete Age in Days (initial 
readings taken at age 4 days) 

A--Shrinkage Specimen With Three Bars, B-3, (p=2.07%) 
B--Shrinkage Specimen With One Bar, Il-1, (p=0.67r~) 

Fig. 6--Average shrinkage curvature along m·embers versus 
time curves 



0 

10 

Midspan Gages (Simple Beams) 

20 40 

Time in Days (time zero taken at 
age 28 days--age beams were loaded) 

60 

O -- Bottom Ga~e ( Tension) For Three-Bar Simple Beam, 
SD-3, tp = 2.07%, wSL/wDL = 5.5) 

0 -- Top Gage (Compression) For Three Bar Simple Beam, 
sn-3, (p = 2.01%, wsU"'DL = 5.5) 

A -- Bottom Gage (Tension) For One-Bar Simple Beam, 
SD-1, (p = 0.67%, w8JwDL =- 2.0) 

):::(-- Top Gage (Compression) For One-Bar Simple Beam, 
SB-1, (p = 0.67%, wsJwDL = 2.0) 

Fig. 7--Total (instantaneous plus time-dependent) concrete 
strain versus time curves for two simple beams with 
different steel percentages and loading; but the 
same computed elastic concrete stresses 

I_, 

J 

. I 

1 

. i 



n 
[ 

r 

lJ 
r 
l_J 

r 
L 

[ 

r 
' L --' 

1-. ib', . , .. 

11 

Middle Support Gages (Continuous Beams) 
--Negative Moment Region 

Point of Max. Elastic Defl. Gages (Cont.Beams) 
--Positive Moment Hegion 

Time in Days (time zero taken at 
age 28 days--age beams were loaded) 

0 Bottom Gage (Tension-Pos .Mom., Compression-Neg.Mom.) 
For Three-Bar Continuous Beam,LB-3, (p=2.07~f ,w

8
Jwn

1
=5.5) 

El Top Gage ( Compression-Pos .Mom., Tension-Neg.Mom.) For 
Three-Bar Continuous Beam, LB-3, (p=2. 07%,w 

8
Jwn

1
=5. 5) 

8,. -- Bottom Gage (Tension-Pos.Mom., Compression-Neg.Mom.) 
For One-Bar Continuous Beam,LB-1,(p=0.67%,wsr/wn1=2.0) 

.l::( -- Top Gage ( Compression-Pos .Mom., Tension-Neg.Mom.) For 
One-Bar Continuous Beam, LB-1, LB-1, (p=O. 67%,w8Jwn1=2. 0) 

Fig. 8--'l'otal (instantaneous plus time-dependent) concrete 
strain versus time curves £or two continuous beams 
with different steel percentages and loading, but 
the same computed elastic concrete stresses 



0 --

tJ -­

A--

.kl. --

12 

flOO r--_1_-M._d_s...;' p:..a_n_G_a...;p;;;.;e..,.s_(.;..s_. ,_·.1111...;p:..l_e_B_e_a_m_s...:-) _____ _ 

0 40 

Time in Days (time zero taken at 
age 28 days--age beams were loaded 

60 

Bottom Ga~e (Tension) For Three-Bar Simple Beam, 
SB-3, (p = 2.07~;, w81/wDL = 5.5) 

'l'op Gage (Compression) For Three-Bar Simple Beam, 
SB-3, (p = 2.01,i, ,r Jw = 5.5) 

S DL 
Bottom Ga?e (Tensi~n For One-Dar Simple Beam, 

SB-1, ,P = 0.671b, w /w = 2.0) 
SL DL 

Top Gage (Compressio!'!) For One-Bar Simple Beam, 
SB-1, ( p = 0 • 6 7 ;~, ,v /w L = 2 • 0) 

SL D 
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Fig. 10--Instantaneous plu~ creep strain versus time curves 
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